

Advanced Information and Knowledge Processing

Series Editors
Professor Lakhmi Jain
Xindong Wu

Also in this series

Gregoris Mentzas, Dimitris Apostolou, Andreas Abecker and Ron Young
Knowledge Asset Management
1-85233-583-1

Michalis Vazirgiannis, Maria Halkidi and Dimitrios Gunopulos
Uncertainty Handling and Quality Assessment in Data Mining
1-85233-655-2

Asunción Gómez-Pérez, Mariano Fernández-López, Oscar Corcho
Ontological Engineering
1-85233-551-3

Arno Scharl (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and Xindong Wu
Knowledge Discovery in Multiple Databases
1-85233-703-6

Jason T.L. Wang, Mohammed J. Zaki, Hannu T.T. Toivonen and Dennis Shasha (Eds)
Data Mining in Bioinformatics
1-85233-671-4

C.C. Ko, Ben M. Chen and Jianping Chen
Creating Web-based Laboratories
1-85233-837-7

Manuel Graña, Richard Duro, Alicia d’Anjou and Paul P. Wang (Eds)
Information Processing with Evolutionary Algorithms
1-85233-886-0

Colin Fyfe
Hebbian Learning and Negative Feedback Networks
1-85233-883-0

Yun-Heh Chen-Burger and Dave Robertson
Automatic Business Modelling
1-85233-835-0

Dirk Husmeier, Richard Dybowski and Stephen Roberts (Eds)
Probabilistic Modeling in Bioinformatics and Medical Informatics
1-85233-778-8

K.C. Tan, E.F. Khor and T.H. Lee
Multiobjective Evolutionary Algorithms and Applications
1-85233-863-9

Ajith Abraham, Lakhmi Jain and
Robert Goldberg (Eds)

Evolutionary
Multiobjective
Optimization
Theoretical Advances and Applications

With 173 Figures

123

Ajith Abraham
Department of Computer Science, Oklahoma State University, USA

Lakhmi Jain
KES Center, University of South Australia, Australia

Robert Goldberg
Department of Computer Science, Queens College, New York, USA

Series Editors
Xindong Wu
Lakhmi Jain

British Library Cataloguing in Publication Data
Evolutionary multiobjective optimization : theoretical

Advances and applications. – (Advanced information and knowledge processing)
1. Mathematical optimization 2. Evolutionary computing
I. Abraham, Ajith, 1968– II. Jain, L.C. III. Goldberg, Robert, 1939–
519.6
ISBN 1852337877

Library of Congress Cataloging-in-Publication Data
Evolutionary multiobjective optimization : theoretical advances and applications /
[edited by] Ajith Abraham, Lakhmi Jain, Robert Goldberg.

p .cm. -- (Advanced information and knowledge processing)
Includes bibliographical references and index.
ISBN 1-85233-787-7 (alk. paper)
1. Evolutionary programming (Computer science) 2. Genetic algorithms. 3. Mathematical
optimization. I. Abraham, Ajith, 1968– II. Jain, L. C. III. Goldberg, Robert, 1939– IV. Series

T57.E95 2004
005.1--dc22 2004052555

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

AI&KP ISSN 1610-3947
ISBN-10: 1-85233-787-7
ISBN-13: 978-1-85233-787-2
Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005
Printed in the United States of America

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typesetting: Electronic text files prepared by editors
34/3830-543210 Printed on acid-free paper SPIN 10968215

Preface

Multiobjective optimization has been available for about two decades, and its
application in real world problems is continuously increasing. An important
task in multiobjective optimization is to identify the set of Pareto-optimal
solutions. An evolutionary algorithm is characterized by a population of
solution candidates and the reproduction operator enables the process to com-
bine existing solutions to generate new solutions. As a result, the computation
finds several members of the Pareto-optimal set in a single run instead of per-
forming a series of separate runs, which is the case for some of the conventional
stochastic processes. The main challenge in a multiobjective optimization
environment is to minimize the distance of the generated solutions to the
Pareto set and to maximize the diversity of the developed Pareto set. A
good Pareto set may be obtained by appropriate guiding of the search pro-
cess through careful design of reproduction operators and fitness assignment
strategies. To obtain diversification special care has to be taken in the selection
process. Special care is also to be taken to prevent non-dominated solutions
from being lost.

Addressing the various issues of evolutionary multiobjective optimiza-
tion problems and the various design challenges using different intelligent
approaches is the novelty of this edited volume. This volume comprises 12
chapters’ including two introductory chapters giving the fundamental defini-
tions and some important research challenges. Several complex test functions
and a practical problem involving the multiobjective optimization of space
structures under static and seismic loading conditions used to illustrate the
importance of the evolutionary algorithm approach.

First, we would like to thank Lance Chambers (Australia) for initiating this
book project in 2001. We are very much grateful to the authors of this volume
and to the reviewers for their tremendous service by critically reviewing the
chapters. The editors would like to thank Beverly Ford and Catherine Drury of
Springer Verlag, London office and Jenny Wolkowicki of Springer Verlag, New
York Office for the editorial assistance and excellent cooperative collaboration
to produce this important scientific work. We are also indebted to Berend Jan

vi Preface

van der Zwaag (University of Twente, The Netherlands) for the tremendous
help during the preparation of the manuscript. We hope that the reader will
share our excitement to present this volume on ‘Evolutionary Multiobjective
Optimization: Theoretical Advances and Applications’ and will find it useful.

Oklahoma State University, USA Ajith Abraham
University of South Australia, Australia Lakhmi Jain
Queens College, USA Robert Goldberg

(Editors)

Contents

Preface v

List of Contributors xv

1 Evolutionary Multiobjective Optimization 1
Ajith Abraham and Lakhmi Jain
1.1 What is Multiobjective Optimization? . 1
1.2 Why Use Evolutionary Algorithms for Multiobjective

Optimization? . 2
1.3 Evolutionary Multiobjective Optimization: Challenges,

Advances and Applications . 3
References . 6

2 Recent Trends in Evolutionary Multiobjective Optimization 7
Carlos A. Coello Coello
2.1 Introduction . 7
2.2 Basic Concepts . 8

2.2.1 Pareto Optimality . 8
2.3 Algorithms . 9
2.3.1 Aggregating Functions . 9

2.3.2 Population-based Approaches . 10
2.3.3 Pareto-based Approaches . 11

2.4 Applications . 16
2.5 Test Functions . 17
2.6 Metrics . 18
2.7 Theory . 20
2.8 Promising Paths for Future Research . 20
2.9 Conclusions . 21

Acknowledgments . 22
References . 22

viii Contents

3 Self-adaptation and Convergence
of Multiobjective Evolutionary Algorithms
in Continuous Search Spaces 33
Marco Laumanns
3.1 Introduction . 33
3.2 Self-adaptive Mutation Control . 34

3.2.1 Methods of Mutation Control . 34
3.2.2 Self-adaptive Mutations . 36

3.3 The Model Problem . 36
3.4 Non-elitist Strategies (“komma” Selection) 39
3.5 Pseudo-elitist Strategies (“plus” Selection) 41
3.6 Elitist Strategies . 45

3.6.1 An Elitist Strategy Based on Dominance 45
3.6.2 A Mixed Strategy Using Adaptive Scalarizing

Functions . 47
3.7 Conclusions . 48

Acknowledgments . 52
References . 52

4 A Simple Approach to Evolutionary Multiobjective
Optimization 55
Christine L. Mumford-Valenzuela
4.1 Introduction . 55
4.2 Pareto-based Multiobjective Optimization 56
4.3 An Overview of Evolutionary Techniques

for Multi objective Optimization . 57
4.4 The 0-1 Multiple Knapsack Problem . 60
4.5 An Introduction to SEAMO . 62
4.6 Illustrating SEAMO Using a Small Multiple Knapsack

Problem. 64
4.6.1 Cycle Crossover . 66

4.7 A Summary of Results for Multiple Knapsack Problems 67
4.7.1 Comparisons with Other Evolutionary Algorithms . . 67
4.7.2 The Effect of Increasing the Population Size 68
4.7.3 Investigation of SEAMO’s

Parental Replacement Strategy 69
4.8 Implementing SEAMO to Solve Continuous Test Problems . . 71
4.9 Summary of Results for the Continuous Functions 73
4.10 Conclusions . 75

Acknowledgments . 78
References . 78

Contents ix

5 Quad-trees: A Data Structure for Storing Pareto Sets
in Multiobjective Evolutionary Algorithms with Elitism 81
Sanaz Mostaghim and Jürgen Teich
5.1 Introduction . 81

5.1.1 Multiobjective Optimization . 83
5.2 Multiobjective Evolutionary Algorithms (MOEAs) 83
5.3 Data Structures for Storing Non-dominated Solutions

in MOEA . 84
5.3.1 Linear Lists . 85
5.3.2 Quad-trees . 85

5.4 Use of Quad-trees in MOEA . 93
5.5 Experiments . 95

5.5.1 Test Functions . 95
5.5.2 Comparison . 102

5.6 Conclusion and Future Work . 103
Acknowledgment . 104
References . 104

6 Scalable Test Problems for Evolutionary Multiobjective
Optimization 105
Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler
6.1 Introduction . 105
6.2 Desired Features of Test Problems . 107
6.3 Different Methods of Test Problem Design 109
6.4 Bottom-up Approach . 110

6.4.1 Difficulty in Converging
to the Pareto-optimal Front . 113

6.4.2 Difficulties Across the Pareto-optimal Front 113
6.4.3 Generic Sphere Problem . 114
6.4.4 Curve Problem . 116
6.4.5 Test Problem Generator . 117
6.4.6 Advantages and Disadvantages

of the Bottom-up Approach . 120
6.5 Constraint Surface Approach . 120

6.5.1 Advantages and Disadvantages 122
6.6 Difficulties with Existing MOEAs . 123
6.7 Test Problem Suite . 124

6.7.1 Test Problem DTLZ1 . 125
6.7.2 Test Problem DTLZ2 . 126
6.7.3 Test Problem DTLZ3 . 128
6.7.4 Test Problem DTLZ4 . 129
6.7.5 Test Problem DTLZ5 . 130
6.7.6 Test Problem DTLZ6 . 132
6.7.7 Test Problem DTLZ7 . 134
6.7.8 Test Problem DTLZ8 . 135

x Contents

6.7.9 Test Problem DTLZ9 . 136
6.8 Redundant Solutions . 138
6.9 Conclusions . 139

Acknowledgments . 141
Another Test Problem Using Bottom-up Approach:
The Comet Problem . 141
References . 143

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA)
for Multi-Criteria Optimization Problems 147
Dipti Srinivasan and Tian Hou Seow
7.1 Introduction . 147
7.2 Particles Swarm Optimization . 148
7.3 Particles Swarm Inspired Evolutionary Algorithm (PS-EA) . . 150

7.3.1 Flow of PS-EA . 150
7.3.2 Self-updating Mechanism (SUM) 151
7.3.3 Dynamic Inheritance Probability Adjuster (DIPA) . . 153

7.4 Benchmarking Experiments . 153
7.4.1 Benchmarking Test Functions . 154
7.4.2 GA Parameters . 157
7.4.3 PSO Scheme . 158
7.4.4 PS-EA Parameter Settings . 158
7.4.5 Common Experimental Settings 160

7.5 Simulation Results and Discussion . 160
7.5.1 Optimization of Test Functions

with Increasing Function Dimension 161
7.5.2 Multiobjective Function Optimization 162

7.6 Conclusions . 163
References . 164

8 Evolving Continuous Pareto Regions 167
D. Dumitrescu, Crina Grosan, and Mihai Oltean
8.1 Introduction . 167
8.2 Problem Statement . 168
8.3 Solution Representation and Domination 169
8.4 ε-dominance . 170
8.5 Mutation . 170
8.6 Population Model . 171

8.6.1 Fine Tuning . 172
8.7 Algorithm Complexity . 173
8.8 PECR Algorithm . 173
8.9 Numerical Experiments . 174

8.9.1 Example 1 . 174
8.9.2 Example 2 . 178
8.9.3 Example 3 . 182

Contents xi

8.9.4 Example 4 . 182
8.9.5 Example 5 . 190

8.10 Comparison of Several Multiobjective
Evolutionary Algorithms . 190

8.11 Concluding Remarks and Further Research 195
References . 198

9 MOGADES: Multiobjective Genetic Algorithm
with Distributed Environment Scheme 210
Tomoyuki Hiroyasu, Mitsunori Miki, Jiro Kamiura, Shinya
Watanabe, and Hiro Hiroyasu
9.1 Introduction . 201
9.2 Genetic Algorithms

for Multiobjective Optimization Problems 202
9.2.1 Multiobjective Optimization Problems 202
9.2.2 Parallelization

of Multiobjective Genetic Algorithms 203
9.2.3 Environment Distributed Genetic Algorithms 204
9.2.4 Evaluation Methods . 204

9.3 Multiobjective Genetic Algorithm
with Distributed Environment Scheme (MOGADES) 205
9.3.1 Algorithm of MOGADES. 205
9.3.2 Numerical Examples . 207
9.3.3 Conclusion of this Section . 208

9.4 Distributed Cooperation Model
of Multiobjective Genetic Algorithm (DCMOGA) 209
9.4.1 Algorithm of DCMOGA. 209
9.4.2 Numerical examples . 211

9.5 Distributed Cooperation Model of MOGA with
Environmental Scheme (DCMOGADES) 212
9.5.1 Flow of DCMOGADES . 212
9.5.2 Numerical Examples . 214

9.6 Multiobjective Optimization of Diesel Engine Emissions
and Fuel Economy by MOGADES . 217
9.6.1 Introduction . 217
9.6.2 Diesel Engine Combustion Models 220
9.6.3 System Construction . 221
9.6.4 GA Parameters . 222
9.6.5 Results . 222
9.6.6 Summary of this Section . 224

9.7 Conclusion . 225
References . 225

xii Contents

10 Use of Multiobjective Optimization Concepts
to Handle Constraints in Genetic Algorithms 229
Efrén Mezura-Montes, and Carlos A. Coello Coello
10.1 Introduction . 229
10.2 Basic Concepts . 230
10.3 Multiobjective Based Constraint Handling Techniques 231

10.3.1 COMOGA . 232
10.3.2 VEGA . 233
10.3.3 MOGA . 234
10.3.4 NPGA . 236
10.3.5 Pareto Set and Line Search . 238
10.3.6 Min-max . 239
10.3.7 Pareto Ranking and Domain Knowledge 240
10.3.8 Pareto Dominance and Preselection 242
10.3.9 Pareto Ranking and Robust Optimization 242

10.4 A Small Comparative Study . 244
10.5 Discussion of Results . 248
10.6 Conclusions and Future Work . 250

Acknowledgments . 251
References . 251

11 Multi-criteria Optimization of Finite State Automata:
Maximizing Performance
While Minimizing Description Length 255
Robert Goldberg, and Natalie Hammerman
11.1 Introduction . 255
11.2 The Benchmark . 256

11.2.1 The Problem to be Solved . 256
11.2.2 An FSA Genome . 258
11.2.3 Genetic Algorithm . 258

11.3 MTF Operator . 259
11.3.1 The Basis . 260
11.3.2 Algorithmic Details . 261

11.4 Experimentation and Results . 263
11.4.1 Tracking the Evolutionary Process 264
11.4.2 Results of the Experimentation 264

11.5 Efficiency of MTF . 265
11.5.1 Further Experimentation . 265
11.5.2 Criteria for Evaluation . 267
11.5.3 The Results . 267

11.6 Conclusions and Further Directions . 268
Acknowledgments . 270
References . 270

Contents xiii

12 Multiobjective Optimization of Space Structures
Under Static and Seismic Loading Conditions 273
Nikos D. Lagaros, Manolis Papadrakakis, and Vagelis Plevris
12.1 Introduction . 273
12.2 Single-objective Structural Optimization 274
12.3 Multiobjective Structural Optimization 276

12.3.1 Criteria and Conflict . 276
12.3.2 Formulation of a Multiple Objective

Optimization Problem . 277
12.3.3 Solving the Multiobjective Optimization Problem . . 278

12.4 Structural Design Under Seismic Loading 281
12.4.1 Creation of Artificial Accelerograms 282
12.4.2 Response Spectrum Modal Analysis 283

12.5 Solution of the Optimization Problem . 286
12.5.1 ES for Discrete Optimization Problems 286
12.5.2 ES in Multiobjective Structural

Optimization Problems . 288
12.6 Numerical Results . 289

12.6.1 Six Storey Space Frame . 290
12.6.2 Multi-layered Space Truss . 295

12.7 Conclusion . 298
References . 299

Index 301

List of Contributors

Ajith Abraham (Ed.)
Department of Computer Science, Oklahoma State University, USA
ajith.abraham@ieee.org

Carlos A. Coello Coello
Depto. de Ingenieŕıa Eléctrica, Sección de Computación,
Av. Instituto Politécnico Nacional No. 2508,
Col. San Pedro Zacatenco, D.F. 07300, México
ccoello@cs.cinvestav.mx

Kalyanmoy Deb
Kanpur Genetic Algorithms Laboratory (KanGAL),
Indian Institute of Technology Kanpur, PIN 208016, India
deb@iitk.ac.in

D. Dumitrescu
Department of Computer Science,
Faculty of Mathematics and Computer Science, University Babes-Bolyai,
Cluj-Napoca, 3400 Cluj – Napoca, Romania
ddumitr@cs.ubbcluj.ro

Robert Goldberg (Ed.)
Department of Computer Science, 65-30 Kissena Blvd.,
Queens College, Flushing, NY 11367, USA
rrg@solomon.cs.qc.edu

Crina Grosan
Department of Computer Science,
Faculty of Mathematics and Computer Science, University Babes-Bolyai,
Cluj-Napoca, 3400 Cluj – Napoca, Romania
cgrosan@cs.ubbcluj.ro

xvi List of Contributors

Natalie Hammerman
Department of Mathematics and Computer Science,
Molloy College, 1000 Hempstead Avenue, Rockville Centre, NY 11571, USA
nhammerman@molloy.edu

Hiro Hiroyasu
Department of Mechanical System Engineering,
Kinki University, Hiroshima, Japan
hiro@hiro.kindai.ac.jp

Tomoyuki Hiroyasu
Department of Knowledge Engineering and Computer Sciences,
Doshisha University, Tatara Miyakodani Kyotanabe-shi, Kyoto Japan
tomo@is.doshisha.ac.jp

Lakhmi Jain (Ed.)
University of South Australia, Adelaide, Australia
lakhmi.jain@unisa.edu.au

Jiro Kamiura
Department of Knowledge Engineering and Computer Sciences,
Doshisha University, Tatara Miyakodani Kyotanabe-shi, Kyoto Japan

Nikos D. Lagaros
Institute of Structural Analysis & Seismic Research
National Technical University Athens
Zografou Campus, Athens 157 80, Greece
nlagaros@central.ntua.gr

Marco Laumanns
Swiss Federal Institute of Technology (ETH) Zürich,
Computer Engineering and Networks Laboratory (TIK),
CH-8092 Zürich, Switzerland
laumanns@tik.ee.ethz.ch

Efrén Mezura-Montes
Computer Science Section, Electrical Engineering Department
CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco, México, D.F. 07300
emezura@computacion.cs.cinvestav.mx

Mitsunori Miki
Department of Knowledge Engineering and Computer Sciences,
Doshisha University, Tatara Miyakodani Kyotanabe-shi, Kyoto Japan
mmiki@mail.doshisha.ac.jp

List of Contributors xvii

Sanaz Mostaghim
Electrical Engineering Department,
University of Paderborn, Paderborn, Germany
mostaghim@date.upb.de

Christine L. Mumford-Valenzuela
School of Computer Science, Cardiff University, United Kingdom
christine@cs.cardiff.ac.uk

Mihai Oltean
Department of Computer Science,
Faculty of Mathematics and Computer Science, University Babes-Bolyai,
Cluj-Napoca, 3400 Cluj – Napoca, Romania
molteang@cs.ubbcluj.ro

Manolis Papadrakakis
Institute of Structural Analysis & Seismic Research
National Technical University Athens
Zografou Campus, Athens 157 80, Greece
mpapadra@central.ntua.gr

Vagelis Plevris
Institute of Structural Analysis & Seismic Research
National Technical University Athens
Zografou Campus, Athens 157 80, Greece
vplevrisg@central.ntua.gr

Tian Hou Seow
10 Kent Ridge Crescent, Singapore 119260
Department of Electrical & Computer Engineering
National University of Singapore

Dipti Srinivasan
10 Kent Ridge Crescent, Singapore 119260
Department of Electrical & Computer Engineering
National University of Singapore

Jürgen Teich
Computer Science Department, Friedrich-Alexander-University,
Erlangen, Germany
teich@informatik.uni-erlangen.de

xviii List of Contributors

Lothar Thiele
Swiss Federal Institute of Technology (ETH) Zürich
Computer Engineering and Networks Laboratory (TIK),
CH-8092 Zürich, Switzerland
thiele@tik.ee.ethz.ch

Shinya Watanabe
Department of Knowledge Engineering and Computer Sciences,
Doshisha University, Tatara Miyakodani Kyotanabe-shi, Kyoto Japan

Eckart Zitzler
Swiss Federal Institute of Technology (ETH) Zürich
Computer Engineering and Networks Laboratory (TIK),
CH-8092 Zürich, Switzerland
zitzlerg@tik.ee.ethz.ch

1

Evolutionary Multiobjective Optimization

Ajith Abraham and Lakhmi Jain

Summary. Very often real-world applications have several multiple conflicting
objectives. Recently there has been a growing interest in evolutionary multiobjective
optimization algorithms that combine two major disciplines: evolutionary
computation and the theoretical frameworks of multicriteria decision making. In
this introductory chapter, some fundamental concepts of multiobjective optimization
are introduced, emphasizing the motivation and advantages of using evolutionary
algorithms. We then lay out the important contributions of the remaining chapters
of this volume.

1.1 What Is Multiobjective Optimization?

Even though some real-world problems can be reduced to a matter of a single
objective very often it is hard to define all the aspects in terms of a single
objective. Defining multiple objectives often gives a better idea of the task.
Multiobjective optimization has been available for about two decades, and
its application in real-world problems is continuously increasing. In contrast
to the plethora of techniques available for single-objective optimization,
relatively few techniques have been developed for multiobjective optimization.

In single-objective optimization, the search space is often well defined. As
soon as there are several possibly contradicting objectives to be optimized
simultaneously, there is no longer a single optimal solution but rather a whole
set of possible solutions of equivalent quality. When we try to optimize several
objectives at the same time the search space also becomes partially ordered. To
obtain the optimal solution, there will be a set of optimal trade-offs between
the conflicting objectives.

A multiobjective optimization problem could be written in the form
minimize [f1(x), f2(x),. . . , f k(x)] for k objective functions fi: �n → � subject
to several equality and inequality constraints. For x = [x1, x2,. . . , xn]T , the
vector of decision variables, our task is to determine the set F of all vectors
which satisfy all the constraints, the particular set of values [x∗

1, x
∗
2..., x

∗
n] and

also yields the optimum values for all the objective functions [1].

2 Abraham and Jain

As shown in Figure 1.1, a solution could be best, worst and also indifferent
to other solutions (neither dominating or dominated) with respect to the
objective values. Best solution means a solution not worst in any of the
objectives and at least better in one objective than the other. An optimal
solution is the solution that is not dominated by any other solution in the
search space. Such an optimal solution is called a Pareto-optimal and the
entire set of such optimal trade-offs solutions is called a Pareto- optimal set.
As evident, in a real world situation a decision making (trade-off) process is
required to obtain the optimal solution. Even though there are several ways to
approach a multiobjective optimization problem, most work is concentrated
on the approximation of the Pareto set.

Figure 1.1. Concept of Pareto optimality.

1.2 Why Use Evolutionary Algorithms for
Multiobjective Optimization?

A number of stochastic optimization techniques such as simulated annealing,
tabu search, ant colony optimization etc., could be used to generate the

1 Evolutionary Multiobjective Optimization 3

Pareto set. Just because of the working procedure of these algorithms, the
solutions obtained very often tend to be stuck at a good approximation
and they do not guarantee to identify optimal trade-offs. Evolutionary
algorithm is characterized by a population of solution candidates and the
reproduction process enables the combination of existing solutions to generate
new solutions. This enables finding several members of the Pareto-optimal
set in a single run instead of performing a series of separate runs, which is
the case for some of the conventional stochastic processes. Finally, natural
selection determines which individuals of the current population participate
in the new population.

Figure 1.2. Flowchart of evolutionary algorithm iteration.

The iterative computation process of an evolutionary algorithm is
illustrated in Figure 1.2. Multiobjective evolutionary algorithms can yield a
whole set of potential solutions, which are all optimal in some sense. After the
first pioneering work on multiobjective evolutionary optimization by Schaffer
in the mid-1980s [2], several different algorithms have been proposed and
successfully applied to various problems. For comprehensive overviews and
discussions, the reader is referred to Coello Coello [1] and Deb [3]. Some of
the other advantages of having evolutionary algorithms is that they require
very little knowledge about the problem being solved, less susceptible to the
shape or continuity of the Pareto front, easy to implement, robust, and could
be implemented in a parallel environment.

1.3 Evolutionary Multiobjective Optimization:
Challenges, Advances and Applications

The main challenge in a multiobjective optimization environment is to
minimize the distance of the generated solutions to the Pareto set and to
maximize the diversity of the developed Pareto set. A good Pareto set may
be obtained by appropriate guiding of the search process through careful
design of reproduction operators and fitness assignment strategies. To obtain
diversification special care has to be taken in the selection process. Special care
is also to be taken to prevent non-dominated solutions from being lost [4, 5].
Elitism addresses the problem of losing good solutions during the optimization

4 Abraham and Jain

process. Addressing the evolutionary multiobjective optimization problem
and the various design challenges using different intelligent approaches is the
novelty of this edited volume. This volume comprises 12 chapters and the rest
of the volume is organized as follows.

In the following Chapter, Coello Coello presents the basic concepts of
evolutionary multiobjective algorithms, their potential applications, metrics,
test functions and concludes with some of the most promising future research
directions.

Laumanns begins Chapter 3 by presenting the convergence behavior
of simple evolutionary algorithms with different selection strategies on a
continuous multiobjective optimization problem. Special focus is given to
the problem of controlling the mutation strength, since an adaptation of the
mutation strength is necessary to converge to the optimum with arbitrary
precision, and to achieve linear convergence order. Experiment results reveal
that the convergence properties achieved by a self-adaptation of the mutation
strength on single-objective problems do not carry over to the multiobjective
case, if a simple dominance-based selection scheme is used. As a solution, a
combined strategy is proposed using dominance-based selection in the archive
and scalarizing functions in the working population.

In Chapter 4, Mumford-Valenzuela explains a Pareto-based approach
to evolutionary multi-objective optimization, that avoids most of the time-
consuming global calculations typical of other multiobjective evolutionary
techniques. The new approach uses a simple uniform selection strategy
within a steady-state evolutionary algorithm and employs a straightforward
elitist mechanism for replacing population members with their offspring. An
important advantage of the proposed method is that global calculations
for fitness and Pareto dominance are not needed. The performance of the
algorithm is demonstrated using some benchmark combinatorial problems and
continuous functions.

Mostaghim and Teich in Chapter 5 shows the importance of special data
structures for storing and updating archives which would have a great impact
on the required computational time, especially when optimizing higher-
dimensional problems with large Pareto sets. The authors introduce Quad-
trees as an alternative data structure to linear lists for storing Pareto sets.
Performance of the quad-trees data structures are evaluated and compared
using several multiobjective example problems. The results presented show
that typically, linear lists perform better for small population sizes and higher-
dimensional Pareto fronts (large archives) whereas Quad-trees perform better
for larger population sizes and Pareto sets of small cardinality.

In Chapter 6, Deb et al. suggest three different approaches for
systematically designing test problems for evaluating multiobjective
evolutionary algorithms. The simplicity of construction, scalability to any
number of decision variables and objectives, knowledge of the shape and
the location of the resulting Pareto-optimal front, and introduction of
controlled difficulties in both converging to the true Pareto-optimal front

1 Evolutionary Multiobjective Optimization 5

and maintaining a widely distributed set of solutions are the main features
of the suggested test problems. These test problems should be found useful
in various research activities on new multiobjective evolutionary algorithms
and to enhance the understanding of the working principles of multiobjective
evolutionary algorithms.

Srinivasan and Seow in Chapter 7 present a hybrid combination of
particle swarm optimization and evolutionary algorithm for multiobjective
optimization problems. The main algorithm for swarm intelligence is particle
swarm optimization, which is inspired by the paradigm of birds flocking. The
core updating mechanism of the particle swarm optimization algorithm relies
only on two simple self-updating equations and the process of updating the
individuals per iteration is fast as compared to the computationally expensive
reproduction mechanism using mutation or crossover operations in a typical
evolutionary algorithm. While additional domain-specific heuristics related
to the real-world problems cannot be easily incorporated in the particle
swarm optimization algorithm; in an evolutionary algorithm, heuristics can
be easily incorporated in the population generator and mutation operator
to prevent leading the individuals to infeasible solutions. Therefore, a direct
particle swarm optimization does not perform well in its search in complex
multi-constrained solution spaces, which are the case for many complex real
world problems. To overcome the limitations of particle swarm optimization
and evolutionary algorithms, a hybridized algorithm is proposed to use a
synergistic combination of particle swarm optimization and evolutionary
algorithm. Experiment results using some test functions illustrate the
feasibility of the hybrid approach as a multiobjective search algorithm.

In Chapter 8, Dumitrescu et al. propose a new evolutionary elitist approach
combining a non-standard solution representation and an evolutionary
optimization technique which permits the detection of continuous decision
regions. Each solution in the final population corresponds to a decision region
of the Pareto-optimal set. The proposed method is evaluated using some test
functions.

Hiroyasu et al. in Chapter 9 address the parallel implementation of
multiobjective evolutionary algorithms to manage the computational costs
especially for higher-dimensional problems with large Pareto sets. They
propose a parallel evolutionary algorithm for multiobjective optimization
problems called Multiobjective Genetic Algorithm with Distributed
Environment Scheme (MOGADES). Further, a new mechanism is added
to multiobjective genetic algorithms called Distributed Cooperation model
of Multiobjective Genetic Algorithm (DCMOGA). In DCMOGA, there
are not only individuals for searching Pareto-optimum solutions but also
individuals for searching the solution of one object. After illustrating
MOGADES and DCMOGA, these two algorithms were combined. This hybrid
algorithm is called Distributed Cooperation model of Multiobjective Genetic
Algorithm with Environmental Scheme (DCMOGADES). The performance
of DCMOGADES is illustrated using some test functions.

6 Abraham and Jain

In Chapter 10, Mezura-Montes and Coello Coello describe the general
multiobjective optimization concepts that can be used to incorporate
constraints of any type (linear, non-linear, equality, and inequality) into the
fitness function of a genetic algorithm used for global optimization. Several
approaches reported in the literature are also described and four of them are
compared using several test functions.

Goldberg and Hammerman in Chapter 11 present a new operator, which
when added to a genetic algorithm (GA), improved the performance of the GA
for locating optimal finite state automata. The new operator (termed MTF)
reorganizes a finite state automaton (FSA) genome during the execution of the
genetic algorithm. MTF systematically renames the states and moves them
to the front of the genome. The operator was tested on the ant trail problem.
Across different criteria (failure rate, processing time to locate a solution,
number of generations needed to locate a solution), the MTF-enhanced GA
realized speedups between 110% and 579% over the non-enhanced version. In
addition, the successful FSAs found by the genetic algorithm augmented with
MTF were 25% to 46% smaller in size than those found by the original GA.

In the last chapter, Lagaros et al. deal with a practical problem of
structural sizing. The aim is to minimize the weight of the structure under
certain restrictions imposed by design codes. Authors present two approaches
(rigorous and simplified) with respect to the loading condition, and their
efficiency is compared to find the optimum design of a structure under
multiple objectives. In the context of the rigorous approach a number of
artificial accelerograms are produced from the design response spectrum of the
region for elastic structural response, which constitutes the multiple loading
conditions under which the structures are optimally designed. This approach
is compared with the approximate one based on simplifications adopted by
the seismic codes. Experiment results reveal that the Pareto sets obtained by
the rigorous approach and the simplified one were different.

References

1. Coello Coello, CA, Comprehensive Survey of Evolutionary-Based Multiobjective
Optimization Techniques, International Journal of Knowledge and Information
Systems, 1999; 1(3):269-308.

2. Schaffer, JD, Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms, PhD Thesis, Vanderbilt University, Nashville, USA, 1984.

3. Deb, K, Multiobjective Optimization using Evolutionary Algorithms, John Wiley
& Sons, Chichester, 2001.

4. Laumanns, M, Thiele, L, Deb, K and Zitzler, E, Combining Convergence
and Diversity in Evolutionary Multi-objective Optimization. Evolutionary
Computation, MIT Press, 2002; 10(3):263-282.

5. Zitzler, E, Laumanns, M and Bleuler, S, A Tutorial on Evolutionary
Multiobjective Optimization, Workshop on Multiple Objective Metaheuristics
(MOMH), Springer-Verlag, Berlin, 2004.

2

Recent Trends in Evolutionary Multiobjective
Optimization

Carlos A. Coello Coello

Summary. This chapter presents a brief review of some of the most relevant
research currently taking place in evolutionary multiobjective optimization. The
main topics covered include algorithms, applications, metrics, test functions, and
theory. Some of the most promising future paths of research are also addressed.

2.1 Introduction

Evolutionary algorithms (EAs) are heuristics that use natural selection as
their search engine to solve problems. The use of EAs for search and
optimization tasks has become very popular in the last few years with a
constant development of new algorithms, theoretical achievements and novel
applications [1, 2, 3]. One of the emergent research areas in which EAs have
become increasingly popular is multiobjective optimization. In multiobjective
optimization problems, we have two or more objective functions to be
optimized at the same time, instead of having only one. As a consequence,
there is no unique solution to multiobjective optimization problems, but
instead, we aim to find all of the good trade-off solutions available (the so-
called Pareto optimal set).

The first implementation of a multiobjective evolutionary algorithm
(MOEA) dates back to the mid-1980s [4, 5]. Since then, a considerable
amount of research has been done in this area, now known as evolutionary
multiobjective optimization (EMO for short). The growing importance of this
field is reflected by a significant increment (mainly during the last ten years)
of technical papers in international conferences and peer-reviewed journals,
books, special sessions at international conferences and interest groups on the
Internet [6].1

1The author maintains an EMO repository which currently contains over 1450
bibliographical entries at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO, with a
mirror at http://www.lania.mx/˜ccoello/EMOO/

8 Coello Coello

The main motivation for using EAs to solve multiobjective optimization
problems is because EAs deal simultaneously with a set of possible solutions
(the so-called population) which allows us to find several members of the
Pareto-optimal set in a single run of the algorithm, instead of having to
perform a series of separate runs as in the case of the traditional mathematical
programming techniques [7]. Additionally, EAs are less susceptible to the
shape or continuity of the Pareto front (e.g., they can easily deal with
discontinuous and concave Pareto fronts), whereas these two issues are a real
concern for mathematical programming techniques [6, 8, 9].

2.2 Basic Concepts

The emphasis of this chapter is the solution of multiobjective optimization
problems (MOPs) of the form:

minimize [f1(x), f2(x), . . . , fk(x)] (2.1)

subject to the m inequality constraints:

gi(x) ≤ 0 i = 1, 2, . . . , m (2.2)

and the p equality constraints:

hi(x) = 0 i = 1, 2, . . . , p (2.3)

where k is the number of objective functions fi : R
n → R. We call

x = [x1, x2, . . . , xn]T the vector of decision variables. We wish to determine
from among the set F of all vectors which satisfy Equations 2.2 and 2.3 the
particular set of values x∗

1, x
∗
2, . . . , x

∗
n which yield the optimum values of all

the objective functions.

2.2.1 Pareto Optimality

It is rarely the case that there is a single point that simultaneously
optimizes all the objective functions of a multiobjective optimization problem.
Therefore, we normally look for “trade-offs”, rather than single solutions when
dealing with multiobjective optimization problems. The notion of “optimality”
is therefore different in this case. The most commonly adopted notion of
optimality is that originally proposed by Francis Ysidro Edgeworth [10] and
later generalized by Vilfredo Pareto [11]. Although some authors call this
notion Edgeworth-Pareto optimality (see for example [12]), we will use the
most commonly accepted term: Pareto optimality.

We say that a vector of decision variables x∗ ∈ F is Pareto optimal if there
does not exist another x ∈ F such that fi(x) ≤ fi(x∗) for all i = 1, . . . , k and
fj(x) < fj(x∗) for at least one j.

2 Recent Trends in EMO 9

In words, this definition says that x∗ is Pareto optimal if there exists
no feasible vector of decision variables x ∈ F which would decrease some
criterion without causing a simultaneous increase in at least one other
criterion. Unfortunately, this concept almost always gives not a single solution,
but rather a set of solutions called the Pareto-optimal set. The vectors x∗

correspoding to the solutions included in the Pareto-optimal set are called
non-dominated. The image of the Pareto-optimal set under the objective
functions is called Pareto front.

2.3 Algorithms

The potential of evolutionary algorithms for solving multiobjective
optimization problems was hinted at in the late 1960s by Rosenberg in his
PhD thesis [13]. Rosenberg’s study contained a suggestion that would have
led to multiobjective optimization if he had carried it out as presented. His
suggestion was to use multiple properties (nearness to some specified chemical
composition) in his simulation of the genetics and chemistry of a population
of single-celled organisms. Since his actual implementation contained only one
single property, the multiobjective approach could not be shown in his work.

The first actual implementation of what is now called a multiobjective
evolutionary algorithm (or MOEA, for short) was Schaffer’s Vector Evaluation
Genetic Algorithm (VEGA), which was introduced in the mid-1980s, mainly
aimed at solving problems in machine learning [4, 5, 14]. Since then, a wide
variety of algorithms have been proposed in the literature [6, 8, 15].

We can roughly divide MOEAs into the following types:

• Aggregating functions
• Population-based approaches
• Pareto-based approaches

We will briefly discuss each of them in the following subsections.

2.3.1 Aggregating Functions

Perhaps the most straightforward approach to handling multiple objectives
with any technique is to combine all the objectives into a single one using
either an addition, multiplication or any other combination of arithmetical
operations. These techniques are normally known as “aggregating functions”
because they combine (or “aggregate”) all the objectives of the problem into
a single one. In fact, aggregating approaches are the oldest mathematical
programming methods for multiobjective optimization, since they can be
derived from the Kuhn-Tucker conditions for non-dominated solutions [16].

An example of this approach is a linear sum of weights of the form:

10 Coello Coello

min
k∑

i=1

wifi(x) (2.4)

where wi ≥ 0 are the weighting coefficients representing the relative
importance of the k objective functions of our problem. It is usually assumed
that

k∑
i=1

wi = 1 . (2.5)

Aggregating functions may be linear (as in the previous example) or
nonlinear (e.g., the aggregating functions adopted by game theory [17, 18],
goal programming [19, 20], goal attainment [21, 22] and the min-max
algorithm [23, 24]). Both types of aggregating functions have been used with
evolutionary algorithms in a number of occasions, with relative success.

Aggregating functions have been largely underestimated by EMO
researchers mainly because of the well-known limitation of linear aggregating
functions (i.e., they cannot generate non-convex portions of the Pareto front
regardless of the weight combination used [25]). Note, however, that non-linear
aggregating functions do not necessarily present such limitation [6]. In fact,
even linear aggregating functions can be cleverly defined such that concave
Pareto fronts can be generated [26]. However, the EMO community tends to
show little interest in new algorithms based on aggregating functions, hence
their relatively low popularity among EMO researchers.

2.3.2 Population-based Approaches

In these techniques, the population of an EA is used to diversify the search,
but the concept of Pareto dominance is not directly incorporated into the
selection process. The classical example of this sort of approach is the Vector
Evaluated Genetic Algorithm (VEGA), proposed by Schaffer [5]. VEGA
basically consists of a simple genetic algorithm with a modified selection
mechanism. At each generation, a number of sub-populations are generated by
performing proportional selection according to each objective function in turn.
Thus, for a problem with k objectives, k sub-populations of size M/k each
are generated (assuming a total population size of M). These sub-populations
are then shuffled together to obtain a new population of size M , on which the
genetic algorithm (GA) applies the crossover and mutation operators.

VEGA has several problems, from which the most serious is that its
selection scheme is opposed to the concept of Pareto dominance. If, for
example, there is an individual that encodes a good compromise solution for all
the objectives, but it is not the best in any of them, it will be discarded. Note
however, that such individual should really be preserved because it encodes a
Pareto-optimal solution. Schaffer suggested some heuristics to deal with this
problem. For example, to use a heuristic selection preference approach for non-
dominated individuals in each generation, to protect individuals that encode

2 Recent Trends in EMO 11

Pareto-optimal solutions but are not the best in any single objective function.
Also, crossbreeding among the “species” could be encouraged by adding some
mate selection heuristics instead of using the random mate selection of the
traditional GA. Nevertheless, the fact that Pareto dominance is not directly
incorporated into the selection process of the algorithm remains its main
disadvantage.

One interesting aspect of VEGA is that despite its drawbacks it remains in
current use by some researchers mainly because it is appropriate for problems
in which we want the selection process to be biased and in which we have
to deal with a large number of objectives (e.g., when handling constraints as
objectives in single-objective optimization [27]).

Other researchers have proposed variations of VEGA or other similar
population-based approaches (e.g., [28, 29, 30, 31]). Despite the limitations
of these approaches, their simplicity has attracted several researchers and we
should expect to see more work on population-based approaches in the next
few years.

2.3.3 Pareto-based Approaches

Taking as a basis the main drawbacks of VEGA, Goldberg discussed on
pages 199 to 201 of his famous book on genetic algorithms [1] a way of
tackling multiobjective problems. His procedure consists of a selection scheme
based on the concept of Pareto optimality. Goldberg not only suggested
what would become the standard MOEA for several years, but also indicated
that stochastic noise would make such algorithms useless unless some special
mechanism was adopted to block convergence. Niching or fitness sharing
[32] was suggested by Goldberg as a way to maintain diversity and avoid
convergence of the GA to a single solution.

Pareto-based approaches can be historically studied as covering two
generations. The first generation is characterized by the use of fitness sharing
and niching combined with Pareto ranking (as defined by Goldberg or
adopting a slight variation). The most representative algorithms from the
first generation are the following:

1. Non-dominated Sorting Genetic Algorithm (NSGA): This
algorithm was proposed by Srinivas and Deb [33]. The approach is based
on several layers of classifications of the individuals as suggested by
Goldberg [1]. Before selection is performed, the population is ranked on
the basis of non-domination: all non-dominated individuals are classified
into one category (with a dummy fitness value, which is proportional to
the population size, to provide an equal reproductive potential for these
individuals). To maintain the diversity of the population, these classified
individuals are shared with their dummy fitness values. Then this group
of classified individuals is ignored and another layer of non-dominated
individuals is considered. The process continues until all individuals in the

12 Coello Coello

population are classified. Stochastic remainder proportionate selection is
adopted for this technique. Since individuals in the first front have the
maximum fitness value, they always get more copies than the rest of the
population. This allows to search for non-dominated regions, and results
in convergence of the population toward such regions. Sharing, its part,
helps to distribute the population over this region (i.e., the Pareto front
of the problem).

2. Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et
al. [34]. The NPGA uses a tournament selection scheme based on
Pareto dominance. The basic idea of the algorithm is the following: Two
individuals are randomly chosen and compared against a subset from the
entire population (typically, around 10% of the population). If one of them
is dominated (by the individuals randomly chosen from the population)
and the other is not, then the non-dominated individual wins. When both
competitors are either dominated or non-dominated (i.e., there is a tie),
the result of the tournament is decided through fitness sharing [35].

3. Multiobjective Genetic Algorithm (MOGA): Proposed by Fonseca
and Fleming [36]. In MOGA, the rank of a certain individual corresponds
to the number of chromosomes in the current population by which it is
dominated. Consider, for example, an individual xi at generation t, which
is dominated by p

(t)
i individuals in the current generation.

The rank of an individual is given by [36]:

rank(xi, t) = 1 + p
(t)
i . (2.6)

All non-dominated individuals are assigned rank 1, while dominated ones
are penalized according to the population density of the corresponding
region of the trade-off surface.
Fitness assignment is performed in the following way [36]:
a) Sort population according to rank.
b) Assign fitness to individuals by interpolating from the best (rank 1)

to the worst (rank n ≤ M) in the way proposed by Goldberg (1989),
according to some function, usually linear, but not necessarily.

c) Average the fitnesses of individuals with the same rank, so that all of
them are sampled at the same rate. This procedure keeps the global
population fitness constant while maintaining appropriate selective
pressure, as defined by the function used.

The second generation of MOEAs was born with the introduction of
the notion of elitism. In the context of multiobjective optimization, elitism
usually (althought not necessarily) refers to the use of an external population
(also called secondary population) to retain the non-dominated individuals.
However, the use of this external file raises several questions:

2 Recent Trends in EMO 13

• How does the external file interact with the main population?
• What do we do when the external file is full?
• Do we impose additional criteria to enter the file instead of just using

Pareto dominance?

Note that elitism can also be introduced through the use of a (µ + λ)-
selection in which parents compete with their children, and those which are
non-dominated (and possibly comply with some additional criterion such as
providing a better distribution of solutions) are selected for the following
generation.

The most representative second generation MOEAs are the following:

1. Strength Pareto Evolutionary Algorithm (SPEA): This algorithm
was introduced by Zitzler and Thiele [37]. This approach was conceived as
a way of integrating different MOEAs. SPEA uses an archive containing
non-dominated solutions previously found (the so-called external non-
dominated set). At each generation, non-dominated individuals are copied
to the external non-dominated set. For each individual in this external set,
a strength value is computed. This strength is similar to the ranking value
of MOGA, since it is proportional to the number of solutions to which a
certain individual dominates.
In SPEA, the fitness of each member of the current population is computed
according to the strengths of all external non-dominated solutions that
dominate it. Additionally, a clustering technique called “average linkage
method” [38] is used to keep diversity.

2. Strength Pareto Evolutionary Algorithm 2 (SPEA2): This approach
has three main differences with respect to its predecessor [39]: (1) it
incorporates a fine-grained fitness assignment strategy which takes into
account for each individual the number of individuals that dominate it
and the number of individuals by which it is dominated; (2) it uses a
nearest neighbor density estimation technique which guides the search
more efficiently, and (3) it has an enhanced archive truncation method
that guarantees the preservation of boundary solutions.

3. Pareto Archived Evolution Strategy (PAES): This algorithm was
introduced by Knowles and Corne [40]. PAES consists of a (1+1)
evolution strategy (i.e., a single parent that generates a single offspring)
in combination with a historical archive that records some of the
non-dominated solutions previously found. This archive is used as a
reference set against which each mutated individual is being compared.
An interesting aspect of this algorithm is its procedure used to maintain
diversity which consists of a crowding procedure that divides objective
space in a recursive manner. Each solution is placed in a certain
grid location based on the values of its objectives (which are used as
its “coordinates” or “geographical location”). A map of this grid is

14 Coello Coello

maintained, indicating the number of solutions that reside in each grid
location. Since the procedure is adaptive, no extra parameters are required
(except for the number of divisions of the objective space).

4. Non-dominated Sorting Genetic Algorithm II (NSGA-II): Deb et
al. [41, 42, 43] proposed a revised version of the NSGA [33], called NSGA-
II, which is more efficient (computationally speaking), uses elitism and a
crowded comparison operator that keeps diversity without specifying any
additional parameters. The NSGA-II does not use an external memory
as in the previous algorithms. Instead, its elitist mechanism consists of
combining the best parents with the best offspring obtained (i.e., a (µ+λ)-
selection).

5. Niched Pareto Genetic Algorithm 2 (NPGA 2): Erickson et al. [44]
proposed a revised version of the NPGA [34] called the NPGA 2. This
algorithm uses Pareto ranking but keeps tournament selection (solving
ties through fitness sharing as in the original NPGA). In this case, no
external memory is used and the elitist mechanism is similar to the one
adopted by the NSGA-II. Niche counts in the NPGA 2 are calculated
using individuals in the partially filled next generation, rather than using
the current generation. This is called continuously updated fitness sharing,
and was proposed by Oei et al. [45].

6. Pareto Envelope-based Selection Algorithm (PESA): This
algorithm was proposed by Corne et al. [46]. This approach uses a small
internal population and a larger external (or secondary) population. PESA
uses the same hyper-grid division of phenotype (i.e., objective function)
space adopted by PAES to maintain diversity. However, its selection
mechanism is based on the crowding measure used by the hyper-grid
previously mentioned. This same crowding measure is used to decide what
solutions to introduce into the external population (i.e., the archive of
non-dominated vectors found along the evolutionary process). Therefore,
in PESA, the external memory plays a crucial role in the algorithm
since it determines not only the diversity scheme, but also the selection
performed by the method. There is also a revised version of this algorithm,
called PESA-II [47]. This algorithm is identical to PESA, except for
the fact that region-based selection is used in this case. In region-based
selection, the unit of selection is a hyperbox rather than an individual.
The procedure consists of selecting (using any of the traditional selection
techniques [48]) a hyperbox and then randomly selecting an individual
within that hyperbox. The main motivation of this approach is to reduce
the computational costs associated with traditional MOEAs (i.e., those
based on Pareto ranking).

2 Recent Trends in EMO 15

Population

Nominal

Selection

Crossover

Mutation

Elitism

New
Population

Convergence?

Filter

External
Memory

cycle
micro−GA

N

Y

Non−ReplaceableReplaceable

Population Memory

Random
Population

Fill in
both parts

of the
population
memory

Initial

Figure 2.1. Diagram that illustrates the way in which the micro-GA for
multiobjective optimization works [50].

7. Micro-Genetic Algorithm: This approach was introduced by Coello
Coello and Toscano Pulido [49, 50]. A micro-genetic algorithm is a
GA with a small population and a reinitialization process. The way
in which the micro-GA works is illustrated in Figure 2.1. First, a
random population is generated. This random population feeds the
population memory, which is divided in two parts: a replaceable and a
non-replaceable portion. The non-replaceable portion of the population
memory never changes during the entire run and is meant to provide the
required diversity for the algorithm. In contrast, the replaceable portion
experiences changes after each cycle of the micro-GA.

16 Coello Coello

The population of the micro-GA at the beginning of each of its cycles is
taken (with a certain probability) from both portions of the population
memory so that there is a mixture of randomly generated individuals (non-
replaceable portion) and evolved individuals (replaceable portion). During
each cycle, the micro-GA undergoes conventional genetic operators. After
the micro-GA finishes one cycle, two non-dominated vectors are chosen2

from the final population and they are compared with the contents of the
external memory (this memory is initially empty). If either of them (or
both) remains as non-dominated after comparing it against the vectors in
this external memory, then they are included there (i.e., in the external
memory). This is the historical archive of non-dominated vectors. All
dominated vectors contained in the external memory are eliminated.
The micro-GA then uses three forms of elitism: (1) it retains non-
dominated solutions found within the internal cycle of the micro-GA, (2)
it uses a replaceable memory whose contents is partially “refreshed” at
certain intervals, and (3) it replaces the population of the micro-GA by
the nominal solutions produced (i.e., the best solutions found after a full
internal cycle of the micro-GA).

EMO researchers are still wondering about the sort of algorithms that will
give rise to the third generation, but the emphasis seems to be on algorithmic
efficiency [51, 52] and on spatial data structures that improve the efficiency of
the storage in the external population [53, 54, 55, 56]. We should also expect
to see more work on the true role of elitism in evolutionary multiobjective
optimization [57, 58].

2.4 Applications

An analysis of the evolution of the EMO literature reveals some interesting
facts. From the first EMO approach published in 1985 [5] up to the first
survey of the area published in 1995 [59], the number of published papers
related to EMO is relatively low. However, from 1995 to date, the increase
of EMO-related papers is exponential. The EMO repository registers over
1450 papers, from which a vast majority are applications. The vast number
of EMO papers currently available makes it impossible to attempt to produce
a detailed review of them in this section. Instead, we will discuss the most
popular application fields, indicating some of the specific areas within them
in which researchers have focused their main efforts.

Current EMO applications can be roughly classified in three large groups:
engineering, industrial, and scientific. Some specific areas within each of these
groups are indicated next.

2This is assuming that there are two or more non-dominated vectors. If there is
only one, then this vector is the only one selected.

2 Recent Trends in EMO 17

We will start with the engineering applications, which are, by far, the most
popular in the literature. This should not be too surprising, since engineering
disciplines normally have problems with better understood mathematical
models which facilitates the use of evolutionary algorithms. A representative
sample of engineering applications is the following (aeronautical engineering
seems to be the most popular subdiscipline within this group):

• Electrical engineering [60, 61, 62]
• Hydraulic engineering [63, 44, 64]
• Structural engineering [65, 66, 67]
• Aeronautical engineering [68, 69, 70]
• Robotics [71, 72, 73]
• Control [74, 75, 76]
• Telecommunications [77, 78, 79]
• Civil engineering [80, 81, 82]
• Transport engineering [83, 84, 85]

Industrial applications occupy the second place in popularity in the EMO
literature. Within this group, scheduling is the most popular subdiscipline. A
representative sample of industrial applications is the following:

• Design and manufacture [86, 87, 88]
• Scheduling [89, 90, 91]
• Management [92, 93, 94]

Finally, we have a variety of scientific applications, from which the most
popular are (for obvious reasons) those related to computer science:

• Chemistry [95, 96, 97]
• Physics [98, 18, 99]
• Medicine [100, 101, 102]
• Computer science [103, 104, 105, 106]

The above distribution of applications indicates a strong interest for
developing real-world applications of EMO algorithms (something not
surprising considering that most real-world problems are of a multiobjective
nature). Furthermore, the previous sample of EMO applications should give
a general idea of the application areas that have not been explored yet, some
of which are mentioned in the following section.

2.5 Test Functions

One of the fundamental issues when proposing an algorithm is to have a
standard methodology to validate it. As part of this methodology, certain
test functions (i.e., a benchmark) are required. In the early days of EMO
research, very simple unconstrained bi-objective test functions were adopted

18 Coello Coello

[23, 33, 34]. However, in the last few years several researchers have produced
an important number of test functions that have become standard in the
EMO community [107, 108, 6, 109]. Such test functions present certain
difficulties for traditional EAs and mathematical programming techniques
used for multiobjective optimization (e.g., multifrontality, disconnected or
concave Pareto fronts). Note, however, that no serious theoretical study
has been performed regarding the characteristics that make a multiobjective
problem difficult for an MOEA and some apparently “difficult” test functions
have been found to be relatively easy for most MOEAs [6].

The transition from two to three objective functions is taking place in
the literature, and high-dimensional problems are the current focus of study
among EMO researchers [110]. We should expect that more complex test
functions appear in the literature in the next few years, emphasizing aspects
such as the presence of noise, uncertainty, dynamic objective functions, and
epistasis, among other issues [111, 6, 112, 113].

2.6 Metrics

The definition of appropriate metrics is very important to be able to validate
an algorithm. However, when dealing with multiobjective optimization
problems, there are several reasons why the qualitative assessment of results
becomes difficult. The initial problem is that we will be generating several
solutions, instead of only one (we aim to generate as many elements as possible
of the Pareto-optimal set). The second problem is that the stochastic nature of
evolutionary algorithms makes it necessary to perform several runs to assess
their performance. Thus, our results have to be validated using statistical
analysis tools. Finally, we may be interested in measuring different things. For
example, we may be interested in having a robust algorithm that approximates
the global Pareto front of a problem consistently, rather than an algorithm
that converges to the global Pareto front but only occasionally. Also, we may
be interested in analyzing the behavior of an evolutionary algorithm during
the evolutionary process, trying to establish its capabilities to keep diversity
and to progressively converge to a set of solutions close to the global Pareto
front of a problem.

There are normally the issues to take into consideration to design a good
metric in this domain [114]:

1. Minimize the distance of the Pareto front produced by our algorithm with
respect to the global Pareto front (assuming we know its location).

2. Maximize the spread of solutions found, so that we can have a distribution
of vectors as smooth and uniform as possible.

3. Maximize the number of elements of the Pareto-optimal set found.

2 Recent Trends in EMO 19

The research produced in the last few years has included a wide variety of
metrics that assess the performance of an MOEA in one of the three aspects
previously indicated [6]. Some examples are the following:

1. Error Ratio (ER): This metric was proposed by Van Veldhuizen [115]
to indicate the percentage of solutions (from the non-dominated vectors
found so far) that are not members of the true Pareto-optimal set:

ER =
∑n

i=1 ei

n
, (2.7)

where n is the number of vectors in the current set of non-dominated
vectors available; ei = 0 if vector i is a member of the Pareto-optimal
set, and ei = 1 otherwise. It should then be clear that ER = 0 indicates
an ideal behavior, since it would mean that all the vectors generated by
our MOEA belong to the Pareto-optimal set of the problem. This metric
addresses the third issue from the list previously provided.

2. Generational Distance (GD): The concept of generational distance was
introduced by Van Veldhuizen and Lamont [116] as a way of estimating
how far the elements in the set of non-dominated vectors are found from
those in the Pareto-optimal set and is defined as:

GD =

√∑n
i=1 d2

i

n
(2.8)

where n is the number of vectors in the set of non-dominated solutions
found so far and di is the Euclidean distance (measured in objective space)
between each of these and the nearest member of the Pareto-optimal set.
It should be clear that a value of GD = 0 indicates that all the elements
generated are in the Pareto-optimal set. Therefore, any other value will
indicate how “far” we are from the global Pareto front of our problem.
This metric addresses the first issue from the list previously provided.

3. Spacing (SP): Here, one desires to measure the spread (distribution) of
vectors throughout the non-dominated vectors found so far. Since the
“beginning” and “end” of the current Pareto front found are known, a
suitably defined metric judges how well the solutions in this front are
distributed. Schott [117] proposed such a metric measuring the range
(distance) variance of neighboring vectors in the non-dominated vectors
found so far. This metric is defined as:

S �

√√√√ 1
n − 1

n∑
i=1

(d − di)2 , (2.9)

where di = minj(| f i
1(x) − f j

1 (x) | + | f i
2(x) − f j

2 (x) |), i, j = 1, . . . , n, d is
the mean of all di, and n is the number of non-dominated vectors found

20 Coello Coello

so far. A value of zero for this metric indicates all members of the Pareto
front currently available are equidistantly spaced. This metric addresses
the second issue from the list previously provided.

Many other metrics exist (see for example [118, 108, 6, 9]), but some recent
theoretical results seem to indicate that they may not be as reliable as we think
and further research in this direction is necessary [119, 120, 121].

2.7 Theory

The weakest aspect of the current EMO research lies on the theoretical
foundations of the area. Most of the current research concentrates on proving
convergence of MOEAs [122, 123, 124, 125, 126, 127].

However, several research topics are still open. For example:

• Study the structure of fitness landscapes in multiobjective optimization
problems [128, 129].

• There are no current attempts to answer a fundamental question: what
makes difficult a multiobjective optimization problem for an MOEA?

• Develop a formal framework to analyze and prove convergence of parallel
MOEAs.

• We know that if too many objective functions are used, the concept
of Pareto dominance will eventually lead us to a situation in which all
the individuals in the population will be non-dominated. The question is
then, what is the theoretical limit for Pareto ranking assuming finite size
populations?

• Perform run-time analysis of an MOEA [130].
• It is necessary to provide definitions of robustness, convergence, and

diversity (among others) in the context of evolutionary multiobjective
optimization that are acceptable by the EMO community at large [131].

2.8 Promising Paths for Future Research

After providing a general overview of the research currently done in
evolutionary multiobjective optimization, it is important to indicate now what
are some of the areas and problems that represent the most promising research
challenges for the next few years. Some of these promising paths for future
research are the following:

• Incorporation of preferences in MOEAs: Despite the efforts of
some researchers to incorporate users preferences into MOEAs so as to
narrow the search, most of the multicriteria decision-making techniques
developed in Operations Research have not been applied in evolutionary
multiobjective optimization [132, 133]. Such incorporation of preferences

2 Recent Trends in EMO 21

is very important in real-world applications since the user will only need
one Pareto-optimal solution and not the whole set as normally assumed
by EMO researchers.

• Dynamic Test Functions: After tackling static problems with two and
three objective functions, the next logical step is to develop MOEAs that
can deal with dynamic test functions [134] (i.e., test functions in which the
Pareto front moves over time due to the existence of random variables).

• Highly Constrained Search Spaces: There is little work in the current
literature regarding the solution of multiobjective problems with highly
constrained search spaces. However, it is rather common to have such
problems in real-world applications and it is then necessary to develop
novel constraint-handling techniques that can deal with highly constrained
search spaces efficiently.

• Parallelism: We should expect more work on parallel MOEAs in the
next few years. Currently, there is a noticeable lack of research in this
area [6, 135] and it is therefore open to new ideas. It is necessary to have
more algorithms, formal models to prove convergence, and more real-world
applications that use parallelism.

• Theoretical Foundations: It is quite important to develop the
theoretical foundations of MOEAs. Although a few steps have been taken
regarding proving convergence using Markov Chains (e.g., [122, 123]),
much more work remains to be done as indicated in Section 2.7 (see [6]).

2.9 Conclusions

This chapter has discussed some of the most relevant research currently taking
place in evolutionary multiobjective optimization. The main topics discussed
include algorithms, metrics, test functions and theoretical foundations of
EMO. The overview provided intends to give the reader a general picture
of the current state of the field so that newcomers can analyze the current
progress in their areas of interest.

Additionally, we have provided some possible paths of future research
that seem promising in the short and medium term. The areas indicated
should provide research material for those interested in making contributions
in evolutionary multiobjective optimization. The areas described present
challenges that are likely to determine the future research directions in this
area.

22 Coello Coello

Acknowledgments

This chapter is representative of the research performed by the Evolutionary
Computation Group at CINVESTAV-IPN (EVOCINV). The author
acknowledges support from the mexican Consejo Nacional de Ciencia y
Tecnoloǵıa (CONACyT) through project number 34201-A.

References

1. Goldberg, DE, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading, MA, 1989.

2. Bäck, T, Fogel, DB, and Michalewicz, Z (eds.), Handbook of Evolutionary
Computation. Institute of Physics Publishing and Oxford University Press,
1997.

3. Mitchell, M, An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1996.

4. Schaffer, JD, Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, Nashville, TN, 1984.

5. Schaffer, JD, Multiple objective optimization with vector evaluated genetic
algorithms. In Genetic Algorithms and their Applications: Proceedings of the
First International Conference on Genetic Algorithms, pp. 93–100, Hillsdale,
NJ, 1985. Lawrence Erlbaum.

6. Coello Coello, CA, Van Veldhuizen, DA, and Lamont, GB, Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
New York, May 2002. ISBN 0-3064-6762-3.

7. Miettinen, KM, Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston, Massachusetts, 1998.

8. Coello Coello, CA, A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques. Knowledge and Information Systems.
An International Journal, 1(3):269–308, August 1999.

9. Deb, K, Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

10. Edgeworth, FY, Mathematical Physics. P. Keagan, London, England, 1881.
11. Pareto, V, Cours D’Economie Politique, volume I and II. F. Rouge, Lausanne,

1896.
12. Stadler, W, Fundamentals of multicriteria optimization. In Stadler, W (ed),

Multicriteria Optimization in Engineering and the Sciences, pp. 1–25. Plenum
Press, New York, NY, 1988.

13. Rosenberg, RS, Simulation of genetic populations with biochemical properties.
PhD thesis, University of Michigan, Ann Arbor, MI, 1967.

14. Schaffer, JD and Grefenstette, JJ, Multiobjective learning via genetic
algorithms. In Proceedings of the 9th International Joint Conference on
Artificial Intelligence (IJCAI-85), pp. 593–595, Los Angeles, CA, 1985. AAAI.

15. Coello Coello, CA and Mariano Romero, CE, Evolutionary Algorithms and
Multiple Objective Optimization. In Ehrgott, M and Gandibleux, X (eds.),
Multiple Criteria Optimization: State of the Art Annotated Bibliographic
Surveys, pp. 277–331. Kluwer Academic Publishers, Boston, 2002.

2 Recent Trends in EMO 23

16. Kuhn, HW and Tucker, AW, Nonlinear programming. In Neyman, J (ed),
Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, pp. 481–492, Berkeley, CA, 1951. University of California Press.

17. Rao, SS, Game theory approach for multiobjective structural optimization.
Computers and Structures, 25(1):119–127, 1987.

18. Périaux, J, Sefrioui, M, and Mantel, B, GA multiple objective optimization
strategies for electromagnetic backscattering. In Quagliarella, D, Périaux, J,
Poloni, C, and Winter, G (eds.), Genetic Algorithms and Evolution Strategies
in Engineering and Computer Science. Recent Advances and Industrial
Applications, chapter 11, pp. 225–243. John Wiley and Sons, West Sussex,
England, 1997.

19. Deb, K, Solving goal programming problems using multi-objective genetic
algorithms. In 1999 Congress on Evolutionary Computation, pp. 77–84,
Piscataway, NJ, July 1999. IEEE Service Center.

20. Wienke, PB, Lucasius, C, and Kateman, G, Multicriteria target optimization
of analytical procedures using a genetic algorithm. Analytical Chimica Acta,
265(2):211–225, 1992.

21. Wilson, PB and Macleod, MD, Low implementation cost IIR digital
filter design using genetic algorithms. In IEE/IEEE Workshop on Natural
Algorithms in Signal Processing, pp. 4/1–4/8, Chelmsford, U.K., 1993.

22. Zebulum, RS, Pacheco, MA, and Vellasco, M, A multi-objective optimisation
methodology applied to the synthesis of low-power operational amplifiers. In
Cheuri, IJ and dos Reis Filho, CA (eds.), Proceedings of the XIII International
Conference in Microelectronics and Packaging, volume 1, pp. 264–271,
Curitiba, Brazil, August 1998.

23. Hajela, P and Lin, CY, Genetic search strategies in multicriterion optimal
design. Structural Optimization, 4:99–107, 1992.

24. Coello Coello, CA and Christiansen, AD, Two new GA-based methods for
multiobjective optimization. Civil Engineering Systems, 15(3):207–243, 1998.

25. Das, I and Dennis, J, A closer look at drawbacks of minimizing weighted sums
of objectives for pareto set generation in multicriteria optimization problems.
Structural Optimization, 14(1):63–69, 1997.

26. Jin, Y, Okabe, T, and Sendhoff, B, Dynamic Weighted Aggregation for
Evolutionary Multi-Objective Optimization: Why Does It Work and How?
In Spector, L, Goodman, ED, Wu, A, Langdon, WB, Voigt, HM, Gen, M, Sen,
S, Dorigo, M, Pezeshk, S, Garzon, MH, and Burke, E (eds.), Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 1042–
1049, San Francisco, California, 2001. Morgan Kaufmann Publishers.

27. Coello Coello, CA, Treating Constraints as Objectives for Single-Objective
Evolutionary Optimization. Engineering Optimization, 32(3):275–308, 2000.

28. Norris, SR and Crossley, WA, Pareto-optimal controller gains generated by
a genetic algorithm. In AIAA 36th Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, January 1998. AIAA Paper 98-0010.

29. Rogers, JL, A parallel approach to optimum actuator selection with a genetic
algorithm. In AIAA Paper No. 2000-4484, AIAA Guidance, Navigation, and
Control Conference, Denver, CO, August 14–17 2000.

30. Sridhar, J and Rajendran, C, Scheduling in Flowshop and Cellular
Manufacturing Systems with Multiple Objectives – A Genetic Algorithmic
Approach. Production Planning & Control, 7(4):374–382, 1996.

24 Coello Coello

31. Venugopal, V and Narendran, TT, A genetic algorithm approach to the
machine-component grouping problem with multiple objectives. Computers
and Industrial Engineering, 22(4):469–480, 1992.

32. Deb, K and Goldberg, DE, An investigation of niche and species formation in
genetic function optimization. In Schaffer, JD (ed), Proceedings of the Third
International Conference on Genetic Algorithms, pp. 42–50, San Mateo, CA,
June 1989. Morgan Kaufmann Publishers.

33. Srinivas, N and Deb, K, Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, Fall
1994.

34. Horn, J, Nafpliotis, N, and Goldberg, DE, A niched pareto genetic algorithm
for multiobjective optimization. In Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, volume 1, pp. 82–87, Piscataway, NJ, June 1994. IEEE Service
Center.

35. Goldberg, DE and Richardson, J, Genetic algorithm with sharing for
multimodal function optimization. In Grefenstette, JJ (ed), Genetic Algorithms
and Their Applications: Proceedings of the Second International Conference on
Genetic Algorithms, pp. 41–49, Hillsdale, NJ, 1987. Lawrence Erlbaum.

36. Fonseca, CM and Fleming, PJ, Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization. In Forrest, S (ed),
Proceedings of the Fifth International Conference on Genetic Algorithms,
pp. 416–423, San Mateo, CA, 1993. Morgan Kaufmann Publishers.

37. Zitzler, E and Thiele, L, Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4):257–271, November 1999.

38. Morse, JN, Reducing the size of the nondominated set: Pruning by clustering.
Computers and Operations Research, 7(1–2):55–66, 1980.

39. Zitzler, E, Laumanns, M, and Thiele, L, SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering
and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, May 2001.

40. Knowles, JD and Corne, DW, Approximating the nondominated front using
the pareto archived evolution strategy. Evolutionary Computation, 8(2):149–
172, 2000.

41. Deb, K, Agrawal, S, Pratab, A, and Meyarivan, T, A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. KanGAL
report 200001, Indian Institute of Technology, Kanpur, India, 2000.

42. Deb, K, Agrawal, S, Pratab, A, and Meyarivan, T, A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: NSGA-
II. In Schoenauer, M, Deb, K, Rudolph, G, Yao, X, Lutton, E, Merelo, JJ, and
Schwefel, H-P (eds.), Proceedings of the Parallel Problem Solving from Nature
VI Conference, pp. 849–858, Paris, France, 2000. Springer. Lecture Notes in
Computer Science No. 1917.

43. Deb, K, Pratap, A, Agarwal, S, and Meyarivan, T, A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, April 2002.

44. Erickson, M, Mayer, A, and Horn, J, The Niched Pareto Genetic Algorithm
2 Applied to the Design of Groundwater Remediation Systems. In Zitzler, E,

2 Recent Trends in EMO 25

Deb, K, Thiele, L, Coello Coello, CA, and Corne, D (eds.), First International
Conference on Evolutionary Multi-Criterion Optimization, pp. 681–695.
Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

45. Oei, CK, Goldberg, DE, and Chang, S-J, Tournament Selection, Niching,
and the Preservation of Diversity. Technical Report 91011, Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana,
Illinois, December 1991.

46. Corne, DW, Knowles, JD, and Oates, MJ, The Pareto Envelope-based
Selection Algorithm for Multiobjective Optimization. In Schoenauer, M, Deb,
K, Rudolph, G, Yao, X, Lutton, E, Merelo, JJ, and Schwefel, H-P (eds.),
Proceedings of the Parallel Problem Solving from Nature VI Conference,
pp. 839–848, Paris, France, 2000. Springer. Lecture Notes in Computer Science
No. 1917.

47. Corne, DW, Jerram, NR, Knowles, JD, and Oates, MJ, PESA-II: Region-
based Selection in Evolutionary Multiobjective Optimization. In Spector, L,
Goodman, ED, Wu, A, Langdon, WB, Voigt, H-M, Gen, M, Sen, S, Dorigo,
M, Pezeshk, S, Garzon, MH, and Burke, E (eds.), Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pp. 283–290, San
Francisco, California, 2001. Morgan Kaufmann Publishers.

48. Goldberg, DE and Deb, K, A comparison of selection schemes used in genetic
algorithms. In Rawlins, GJE (ed), Foundations of Genetic Algorithms, pp. 69–
93. Morgan Kaufmann, San Mateo, CA, 1991.

49. Coello Coello, CA and Toscano Pulido, G, A Micro-Genetic Algorithm for
Multiobjective Optimization. In Zitzler, E, Deb, K, Thiele, L, Coello Coello,
CA, and Corne, D (eds.), First International Conference on Evolutionary
Multi-Criterion Optimization, pp. 126–140. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

50. Coello Coello, CA and Toscano Pulido, G, Multiobjective Optimization using
a Micro-Genetic Algorithm. In Spector, L, Goodman, ED, Wu, A, Langdon,
WB, Voigt, H-M, Gen, M, Sen, S, Dorigo, M, Pezeshk, S, Garzon, MH, and
Burke, E (eds.), Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2001), pp. 274–282, San Francisco, California, 2001.
Morgan Kaufmann Publishers.

51. Coello Coello, CA and Salazar Lechuga, M, MOPSO: A Proposal for
Multiple Objective Particle Swarm Optimization. In Congress on Evolutionary
Computation (CEC’2002), volume 2, pp. 1051–1056, Piscataway, New Jersey,
May 2002. IEEE Service Center.

52. Jensen, MT, Reducing the run-time complexity of multiobjective eas: The nsga-
ii and other algorithms. IEEE Transactions on Evolutionary Computation,
7(5):503–515, October 2003.

53. Everson, RM, Fieldsend, JE, and Singh, S, Full Elite Sets for Multi-Objective
Optimisation. In Parmee, IC (ed), Proceedings of the Fifth International
Conference on Adaptive Computing Design and Manufacture (ACDM 2002),
volume 5, pp. 343–354, University of Exeter, Devon, UK, April 2002. Springer-
Verlag.

54. Fieldsend, JE, Everson, RM, and Singh, S, Using Unconstrained Elite
Archives for Multiobjective Optimization. IEEE Transactions on Evolutionary
Computation, 7(3):305–323, June 2003.

26 Coello Coello

55. Habenicht, W, Quad trees: A data structure for discrete vector optimization
problems. In Lecture Notes in Economics and Mathematical Systems, volume
209, pp. 136–145, 1982.

56. Mostaghim, S, Teich, J, and Tyagi, A, Comparison of Data Structures for
Storing Pareto-sets in MOEAs. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pp. 843–848, Piscataway, New Jersey, May 2002. IEEE
Service Center.

57. Purshouse, RC and Fleming, PJ, Why use Elitism and Sharing in a Multi-
Objective Genetic Algorithm? In Langdon, WB, Cantú-Paz, E, Mathias, K,
Roy, R, Davis, D, Poli, R, Balakrishnan, K, Honavar, V, Rudolph, G, Wegener,
J, Bull, L, Potter, MA, Schultz, AC, Miller, JF, Burke, E, and Jonoska, N
(eds.), Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2002), pp. 520–527, San Francisco, California, July 2002. Morgan
Kaufmann Publishers.

58. Laumanns, M, Zitzler, E, and Thiele, L, On the Effects of Archiving, Elitism,
and Density Based Selection in Evolutionary Multi-objective Optimization.
In Zitzler, E, Deb, K, Thiele, L, Coello Coello, CA, and Corne, D (eds.),
First International Conference on Evolutionary Multi-Criterion Optimization,
pp. 181–196. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

59. Fonseca, CM and Fleming, PJ, An overview of evolutionary algorithms
in multiobjective optimization. Evolutionary Computation, 3(1):1–16, Spring
1995.

60. Thomson, R and Arslan, T, The Evolutionary Design and Synthesis of
Non-Linear Digital VLSI Systems. In Lohn, J, Zebulum, R, Steincamp, J,
Keymeulen, D, Stoica, A, and Ferguson, MI (eds.), Proceedings of the 2003
NASA/DoD Conference on Evolvable Hardware, pp. 125–134, Los Alamitos,
California, July 2003. IEEE Computer Society Press.

61. Abdel-Magid, YL and Abido, MA, Optimal Multiobjective Design of Robust
Power System Stabilizers Using Genetic Algorithms. IEEE Transactions on
Power Systems, 18(3):1125–1132, August 2003.

62. Ramı́rez Rosado, IJ and Bernal Agust́ın, JL, Reliability and cost optimization
for distribution networks expansion using an evolutionary algorithm. IEEE
Transactions on Power Systems, 16(1):111–118, February 2001.

63. Reed, PM, Minsker, BS, and Goldberg, DE, A multiobjective approach to
cost effective long-term groundwater monitoring using an elitist nondominated
sorted genetic algorithm with historical data. Journal of Hydroinformatics,
3(2):71–89, April 2001.

64. Formiga, KTM, Chaufhry, FH, Cheung, PB, and Reis, LFR, Optimal Design
of Water Distribution System by Multiobjective Evolutionary Methods.
In Fonseca, CM, Fleming, PJ, Zitzler, E, Deb, K, and Thiele, L (eds.),
Evolutionary Multi-Criterion Optimization. Second International Conference,
EMO 2003, pp. 677–691, Faro, Portugal, April 2003. Springer. Lecture Notes
in Computer Science. Volume 2632.

65. Kurapati, A and Azarm, S, Immune Network Simulation with Multiobjective
Genetic Algorithms for Multidisciplinary Design Optimization. Engineering
Optimization, 33:245–260, 2000.

66. Coello Coello, CA and Christiansen, AD, Multiobjective optimization of trusses
using genetic algorithms. Computers and Structures, 75(6):647–660, May 2000.

2 Recent Trends in EMO 27

67. Aguilar Madeira, JF, Rodrigues, H, and Pina, H, Genetic Methods in Multi-
objective Optimization of Structures with an Equality Constraint on Volume.
In Fonseca, CM, Fleming, PJ, Zitzler, E, Deb, K, and Thiele, L (eds.),
Evolutionary Multi-Criterion Optimization. Second International Conference,
EMO 2003, pp. 767–781, Faro, Portugal, April 2003. Springer. Lecture Notes
in Computer Science. Volume 2632.

68. Pulliam, TH, Nemec, M, Hoslt, T, and Zingg, DW, Comparison of Evolutionary
(Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil
Optimizations. In 41st Aerospace Sciences Meeting. Paper AIAA 2003-0298,
Reno, Nevada, January 2003.

69. Obayashi, S, Tsukahara, T, and Nakamura, T, Multiobjective evolutionary
computation for supersonic wing-shape optimization. IEEE Transactions on
Evolutionary Computation, 4(2):182–187, July 2000.

70. Lavagna, MR and Ercoli Finzi, A, Concurrent Processes within Preliminary
Spacecraft Design: An Autonomous Decisional Support Based on Genetic
Algorithms and Analytic Hierarchical Process. In Proceedings of the 17th
International Symposium on Space Flight Dynamics, Moscow, Russia, June
2003.

71. Osyczka, A, Krenich, S, and Karaś, K, Optimum design of robot grippers using
genetic algorithms. In Proceedings of the Third World Congress of Structural
and Multidisciplinary Optimization (WCSMO), Buffalo, New York, May 1999.

72. Teo, J and Abbass, HA, Is a Self-Adaptive Pareto Approach Beneficial for
Controlling Embodied Virtual Robots. In Cantú-Paz, E et al. (eds), Genetic
and Evolutionary Computation—GECCO 2003. Proceedings, Part II, pp. 1612–
1613. Springer. Lecture Notes in Computer Science Vol. 2724, July 2003.

73. Ortmann, M and Weber, W, Multi-criterion optimization of robot trajectories
with evolutionary strategies. In Proceedings of the 2001 Genetic and
Evolutionary Computation Conference. Late-Breaking Papers, pp. 310–316,
San Francisco, CA, July 2001.

74. Blumel, AL, Hughes, EJ, and White, BA, Multi-objective Evolutionary Design
of Fuzzy Autopilot Controller. In Zitzler, E, Deb, K, Thiele, L, Coello Coello,
CA, and Corne, D (eds.), First International Conference on Evolutionary
Multi-Criterion Optimization, pp. 668–680. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

75. Tan, KC, Lee, TH, Khor, EF, and Ou, K, Control system design unification
and automation using an incremented multi-objective evolutionary algorithm.
In Hamza, MH (ed), Proceedings of the 19th IASTED International Conference
on Modeling, Identification and Control. IASTED, Innsbruck, Austria, 2000.

76. Kundu, S and Kawata, S, Evolutionary Multicriteria Optimization for
Improved Design of Optimal Control Systems. In Parmee, IC (ed), Proceedings
of the Fifth International Conference on Adaptive Computing Design and
Manufacture (ACDM 2002), volume 5, pp. 207–218, University of Exeter,
Devon, UK, April 2002. Springer-Verlag.

77. Caswell, DJ and Lamont, GB, Wire-Antenna Geometry Design with
Multiobjective Genetic Algorithms. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pp. 103–108, Piscataway, New Jersey, May 2002. IEEE
Service Center.

78. Kumar, R, and Banerjee, N, Multicriteria Network Design Using Evolutionary
Algorithm. In Cantú-Paz, E et al. (eds), Genetic and Evolutionary

28 Coello Coello

Computation—GECCO 2003. Proceedings, Part II, pp. 2179–2190. Springer.
Lecture Notes in Computer Science Vol. 2724, July 2003.

79. Pullan, W, Optimising Multiple Aspects of Network Survivability. In Congress
on Evolutionary Computation (CEC’2002), volume 1, pp. 115–120, Piscataway,
New Jersey, May 2002. IEEE Service Center.

80. Feng, CW, Liu, L, and Burns, SA, Using genetic algorithms to solve
construction time-cost trade-off problems. Journal of Computing in Civil
Engineering, 10(3):184–189, 1999.

81. Balling, R, The Maximin Fitness Function; Multiobjective City and Regional
Planning. In Fonseca, CM, Fleming, PJ, Zitzler, E, Deb, K, and Thiele,
L (eds.), Evolutionary Multi-Criterion Optimization. Second International
Conference, EMO 2003, pp. 1–15, Faro, Portugal, April 2003. Springer. Lecture
Notes in Computer Science. Volume 2632.

82. Khajehpour, S, Optimal Conceptual Design of High-Rise Office Buldings.
PhD thesis, Civil Engineering Department, University of Waterloo, Ontario,
Canada, 2001.

83. Cheng, R, Gen, M, and Oren, SS, An Adaptive Hyperplane Approach
for Multiple Objective Optimization Problems with Complex Constraints.
In Whitley, D, Goldberg, D, Cantú-Paz, E, Spector, L, Parmee, I, and
Beyer, H-G (eds.), Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2000), pp. 299–306, San Francisco, California, 2000.
Morgan Kaufmann.

84. Gen, M and Li, Y-Z, Solving multi-objective transportation problems by
spanning tree-based genetic algorithm. In Parmee, I (ed), The Integration
of Evolutionary and Adaptive Computing Technologies with Product/System
Design and Realisation, pp. 95–108, Plymouth, United Kingdom, April 1998.
Plymouth Engineering Design Centre, Springer-Verlag.

85. Laumanns, N, Laumanns, M, and Neunzig, D, Multi-objective design space
exploration of road trains with evolutionary algorithms. In Zitzler, E, Deb,
K, Thiele, L, Coello Coello, CA, and Corne, D (eds.), First International
Conference on Evolutionary Multi-Criterion Optimization, pp. 612–623.
Springer-Verlag. Lecture Notes in Computer Science No. 1993, Berlin,
Germany, 2001.

86. Andersson, J, Applications of a Multi-objective Genetic Algorithm to
Engineering Design Problems. In Fonseca, CM, Fleming, PJ, Zitzler, E, Deb,
K, and Thiele, L (eds.), Evolutionary Multi-Criterion Optimization. Second
International Conference, EMO 2003, pp. 737–751, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume 2632.

87. Ramos, RM, Saldanha, RR, Takahashi, RHC, and Moreira, FJS, The Real-
Biased Multiobjective Genetic Algorithm and Its Application to the Design of
Wire Antennas. IEEE Transactions on Magnetics, 39(3):1329–1332, May 2003.

88. Sbalzarini, IF, Müller, S, and Koumoutsakos, P, Microchannel Optimization
Using Multiobjective Evolution Strategies. In Zitzler, E, Deb, K, Thiele,
L, Coello Coello, CA, and Corne, D (eds.), First International Conference
on Evolutionary Multi-Criterion Optimization, pp. 516–530. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

89. Ishibuchi, H, Yoshida, T, and Murata, T, Balance Between Genetic Search and
Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop
Scheduling. IEEE Transactions on Evolutionary Computation, 7(2):204–223,
April 2003.

2 Recent Trends in EMO 29

90. Talbi, E-G, Rahoual, M, Mabed, MH, and Dhaenens, C, A Hybrid Evolutionary
Approach for Multicriteria Optimization Problems: Application to the Flow
Shop. In Zitzler, E, Deb, K, Thiele, L, Coello Coello, CA, and Corne, D (eds.),
First International Conference on Evolutionary Multi-Criterion Optimization,
pp. 416–428. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

91. Brizuela, C, Sannomiya, N, and Zhao, Y, Multi-Objective Flow-Shop:
Preliminary Results. In Zitzler, E, Deb, K, Thiele, L, Coello Coello, CA,
and Corne, D (eds.), First International Conference on Evolutionary Multi-
Criterion Optimization, pp. 443–457. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

92. Jaszkiewicz, A, Hapke, M, and Kominek, P, Performance of Multiple Objective
Evolutionary Algorithms on a Distribution System Design Problem—
Computational Experiment. In Zitzler, E, Deb, K, Thiele, L, Coello Coello,
CA, and Corne, D (eds.), First International Conference on Evolutionary
Multi-Criterion Optimization, pp. 241–255. Springer-Verlag. Lecture Notes in
Computer Science No. 1993, 2001.

93. Krause, M and Nissen, V, On using penalty functions and multicriteria
optimisation techniques in facility layout. In Biethahn, J and Nissen, V (eds.),
Evolutionary Algorithms in Management Applications. Springer-Verlag, Berlin,
Germany, 1995.

94. Ducheyne, EI, De Wulf, RR, and De Baets, B, Bi-objective genetic algorithm
for forest management: a comparative study. In Proceedings of the 2001 Genetic
and Evolutionary Computation Conference. Late-Breaking Papers, pp. 63–66,
San Francisco, CA, July 2001.

95. Jones, G, Brown, RD, Clark, DE, Willett, P, and Glen, RC, Searching
databases of two-dimensional and three-dimensional chemical structures using
genetic algorithms. In Forrest, S (ed), Proceedings of the Fifth International
Conference on Genetic Algorithms, pp. 597–602, San Mateo, California, 1993.
Morgan Kaufmann.

96. Hinchliffe, M, Willis, M, and Tham, M, Chemical process systems modelling
using multi-objective genetic programming. In Koza, JR, Banzhaf, W,
Chellapilla, K, Deb, K, Dorigo, M, Fogel, DB, Garzon, MH, Goldberg, DE,
Iba, H, and Riolo, RL (eds.), Proceedings of the Third Annual Conference
on Genetic Programming, pp. 134–139, San Mateo, CA, July 1998. Morgan
Kaufmann Publishers.

97. Kunha, A, Oliveira, P, and Covas, JA, Genetic algorithms in multiobjective
optimization problems: An application to polymer extrusion. In Wu, AS (ed),
Proceedings of the 1999 Genetic and Evolutionary Computation Conference.
Workshop Program, pp. 129–130, Orlando, FL, July 1999.

98. Parks, GT, Multiobjective pressurized water reactor reload core design by
nondominated genetic algorithm search. Nuclear Science and Engineering,
124(1):178–187, 1996.

99. Golovkin, I, Mancini, R, Louis, S, Ochi, Y, Fujita, K, Nishimura, H, Shirga,
H, Miyanaga, N, Azechi, H, Butzbach, R, Uschmann, I, Förster, E, Delettrez,
J, Koch, J, Lee, RW, and Klein, L, Spectroscopic Determination of Dynamic
Plasma Gradients in Implosion Cores. Physical Review Letters, 88(4), January
2002.

100. de Toro, F, Ros, E, Mota, S, and Ortega, J, Non-invasive Atrial Disease
Diagnosis Using Decision Rules: A Multi-objective Optimization Approach.

30 Coello Coello

In Fonseca, CM, Fleming, PJ, Zitzler, E, Deb, K, and Thiele, L (eds.),
Evolutionary Multi-Criterion Optimization. Second International Conference,
EMO 2003, pp. 638–647, Faro, Portugal, April 2003. Springer. Lecture Notes
in Computer Science. Volume 2632.

101. Aguilar, J and Miranda, P, Approaches Based on Genetic Algorithms for
Multiobjective Optimization Problems. In Banzhaf, W, Daida, J, Eiben, AE,
Garzon, MH, Honavar, V, Jakiela, M, and Smith, RE (eds.), Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’99), volume 1,
pp. 3–10, Orlando, Florida, USA, 1999. Morgan Kaufmann Publishers.

102. Lahanas, M, Schreibmann, E, Milickovic, N, and Baltas, D, Intensity
Modulated Beam Radiation Therapy Dose Optimization with Multiobjective
Evolutionary Algorithms. In Fonseca, CM, Fleming, PJ, Zitzler, E, Deb,
K, and Thiele, L (eds.), Evolutionary Multi-Criterion Optimization. Second
International Conference, EMO 2003, pp. 648–661, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume 2632.

103. Dasgupta, D and González, FA, Evolving Complex Fuzzy Classifier Rules
Using a Linear Tree Genetic Representation. In Spector, L, Goodman,
ED, Wu, A, Langdon, WB, Voigt, H-M, Gen, M, Sen, S, Dorigo, M,
Pezeshk, S, Garzon, MH, and Burke, E (eds.), Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pp. 299–305, San
Francisco, California, 2001. Morgan Kaufmann Publishers.

104. Fornaciari, W, Micheli, P, Salice, F, and Zampella, L, A First Step Towards
Hw/Sw Partitioning of UML Specifications. In IEEE/ACM Design Automation
and Test in Europe (DATE’03), pp. 668–673, Munich, Germany, March 2003.
IEEE.

105. Ekárt, A and Németh, SZ, Selection Based on the Pareto Nondomination
Criterion for Controlling Code Growth in Genetic Programming. Genetic
Programming and Evolvable Machines, 2(1):61–73, March 2001.

106. Llorà, X and Goldberg, DE, Bounding the Effect of Noise in Multiobjective
Learning Classifier Systems. Evolutionary Computation, 11(3):279–298, Fall
2003.

107. Deb, K, Multi-Objective Genetic Algorithms: Problem Difficulties and
Construction of Test Problems. Evolutionary Computation, 7(3):205–230, Fall
1999.

108. Van Veldhuizen, DA and Lamont, GB, Multiobjective optimization with messy
genetic algorithms. In Proceedings of the 2000 ACM Symposium on Applied
Computing, pp. 470–476, Villa Olmo, Como, Italy, 2000. ACM.

109. Deb, K, Pratap, A, and Meyarivan, T, Constrained test problems for
multi-objective evolutionary optimization. In Zitzler, E, Deb, K, Thiele,
L, Coello Coello, CA, and Corne, D (eds.), First International Conference
on Evolutionary Multi-Criterion Optimization, pp. 284–298. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, Berlin, Germany, 2001.

110. Deb, K, Thiele, L, Laumanns, M, and Zitzler, E, Scalable Multi-Objective
Optimization Test Problems. In Congress on Evolutionary Computation
(CEC’2002), volume 1, pp. 825–830, Piscataway, New Jersey, May 2002. IEEE
Service Center.

111. Parmee, IC, Poor-Definition, Uncertainty, and Human Factors—Satisfying
Multiple Objectives in Real-World Decision-Making Environments. In Zitzler,
E, Deb, K, Thiele, L, Coello Coello, CA, and Corne, D (eds.), First

2 Recent Trends in EMO 31

International Conference on Evolutionary Multi-Criterion Optimization,
pp. 67–81. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

112. Tiwari, A, Roy, R, Jared, G, and Munaux, O, Interaction and Multi-
Objective Optimisation. In Spector, L, Goodman, ED, Wu, A, Langdon,
WB, Voigt, H-M, Gen, M, Sen, S, Dorigo, M, Pezeshk, S, Garzon, MH, and
Burke, E (eds.), Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2001), pp. 671–678, San Francisco, California, 2001.
Morgan Kaufmann Publishers.

113. Hughes, EJ, Constraint Handling With Uncertain and Noisy Multi-Objective
Evolution. In Proceedings of the Congress on Evolutionary Computation 2001
(CEC’2001), volume 2, pp. 963–970, Piscataway, New Jersey, May 2001. IEEE
Service Center.

114. Zitzler, E, Deb, K, and Thiele, L, Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195,
Summer 2000.

115. Van Veldhuizen, DA, Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and
Computer Engineering. Graduate School of Engineering. Air Force Institute
of Technology, Wright-Patterson AFB, OH, May 1999.

116. Van Veldhuizen, DA and Lamont, GB, Multiobjective evolutionary algorithm
research: A history and analysis. Technical Report TR-98-03, Department of
Electrical and Computer Engineering, Graduate School of Engineering, Air
Force Institute of Technology, Wright-Patterson AFB, OH, 1998.

117. Schott, JR, Fault tolerant design using single and multicriteria genetic
algorithm optimization. Master’s thesis, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, Cambridge, MA, May
1995.

118. Van Veldhuizen, DA and Lamont, GB, Multiobjective evolutionary algorithm
test suites. In Carroll, J, Haddad, H, Oppenheim, D, Bryant, B, and Lamont,
GB (eds.), Proceedings of the 1999 ACM Symposium on Applied Computing,
pp. 351–357, San Antonio, TX, 1999. ACM.

119. Zitzler, E, Laumanns, M, Thiele, L, Fonseca, CM, and Grunert da Fonseca, V,
Why Quality Assessment of Multiobjective Optimizers Is Difficult. In Langdon,
WB, Cantú-Paz, E, Mathias, K, Roy, R, Davis, D, Poli, R, Balakrishnan,
K, Honavar, V, Rudolph, G, Wegener, J, Bull, L, Potter, MA, Schultz, AC,
Miller, JF, Burke, E, and Jonoska, N (eds.), Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2002), pp. 666–673, San
Francisco, California, July 2002. Morgan Kaufmann Publishers.

120. Knowles, J and Corne, D, On Metrics for Comparing Nondominated Sets. In
Congress on Evolutionary Computation (CEC’2002), volume 1, pp. 711–716,
Piscataway, New Jersey, May 2002. IEEE Service Center.

121. Zitzler, E, Thiele, L, Laumanns, M, Fonseca, CM, and Grunert da Fonseca,
V, Performance Assessment of Multiobjective Optimizers: An Analysis and
Review. IEEE Transactions on Evolutionary Computation, 7(2):117–132, April
2003.

122. Rudolph, G, On a Multi-Objective Evolutionary Algorithm and Its
Convergence to the Pareto Set. In Proceedings of the 5th IEEE Conference on
Evolutionary Computation, pp. 511–516, Piscataway, NJ, 1998. IEEE Press.

123. Rudolph, G and Agapie, A, Convergence Properties of Some Multi-
Objective Evolutionary Algorithms. In Proceedings of the 2000 Conference on

32 Coello Coello

Evolutionary Computation, volume 2, pp. 1010–1016, Piscataway, NJ, July
2000. IEEE Press.

124. Hanne, T, On the convergence of multiobjective evolutionary algorithms.
European Journal of Operational Research, 117(3):553–564, September 2000.

125. Hanne, T, Global multiobjective optimization using evolutionary algorithms.
Journal of Heuristics, 6(3):347–360, August 2000.

126. Van Veldhuizen, DA and Lamont, GB, Evolutionary computation and
convergence to a pareto front. In Koza, JR (ed), Late Breaking Papers at the
Genetic Programming 1998 Conference, pp. 221–228, Stanford, CA, July 1998.
Stanford University Bookstore.

127. Laumanns, M, Thiele, L, Zitzler, E, and Deb, K, Archiving with Guaranteed
Convergence and Diversity in Multi-Objective Optimization. In Langdon,
WB, Cantú-Paz, E, Mathias, K, Roy, R, Davis, D, Poli, R, Balakrishnan,
K, Honavar, V, Rudolph, G, Wegener, J, Bull, L, Potter, MA, Schultz, AC,
Miller, JF, Burke, E, and Jonoska, N (eds.), Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2002), pp. 439–447, San
Francisco, California, July 2002. Morgan Kaufmann Publishers.

128. Wright, S, The roles of mutation, inbreeding, crossbreeding and selection in
evolution. In Jones, DF (ed), Proceedings of the Sixth International Conference
on Genetics, volume 1, pp. 356–366, 1932.

129. Altenberg, L, NK fitness landscapes. In Bäck, T, Fogel, DB, and Michalewicz,
Z (eds.), Handbook of Evolutionary Computation, chapter B2.7.2, pp. B2.7:5–
B2.7:10. Oxford University Press, New York, NY, 1997.

130. Laumanns, M, Thiele, L, Zitzler, E, Welzl, E, and Deb, K, Running Time
Analysis of Multi-objective Evolutionary Algorithms on a Simple Discrete
Optimization Problem. In Merelo Guervós, JJ, Adamidis, P, Beyer, H-
G, Fernández-Villacañas, JL, and Schwefel, H-P (eds.), Parallel Problem
Solving from Nature—PPSN VII, pp. 44–53, Granada, Spain, September 2002.
Springer. Lecture Notes in Computer Science No. 2439.

131. Laumanns, M, Thiele, L, Deb, K, and Zitzler, E, Combining Convergence
and Diversity in Evolutionary Multi-objective Optimization. Evolutionary
Computation, 10(3):263–282, Fall 2002.

132. Coello Coello, CA, Handling Preferences in Evolutionary Multiobjective
Optimization: A Survey. In 2000 Congress on Evolutionary Computation,
volume 1, pp. 30–37, Piscataway, New Jersey, July 2000. IEEE Service Center.

133. Cvetković, D and Parmee, IC, Preferences and their Application
in Evolutionary Multiobjective Optimisation. IEEE Transactions on
Evolutionary Computation, 6(1):42–57, February 2002.

134. Farina, M, Deb, K, and Amato, P Dynamic Multiobjective Optimization
Problems: Test Cases, Approximation, and Applications. In Fonseca, CM,
Fleming, PJ, Zitzler, E, Deb, K, and Thiele, L (eds.), Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003, pp. 311–
326, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer Science.
Volume 2632.

135. Van Veldhuizen, DA, Zydallis, JB, and Lamont, GB, Considerations
in Engineering Parallel Multiobjective Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation, 7(2):144–173, April 2003.

3

Self-adaptation and Convergence of
Multiobjective Evolutionary Algorithms in
Continuous Search Spaces

Marco Laumanns

Summary. This chapter investigates the convergence behavior of simple
evolutionary algorithms with different selection strategies on a continuous
multiobjective model problem. Special focus is given to the problem of controlling
the mutation strength, since an adaptation of the mutation strength is necessary to
converge to the optimum with arbitrary precision, and to achieve linear convergence
order. Adaptive parameter control represents a major research topic in the field
of evolutionary computation, and several methods have been proposed and applied
successfully for single-objective optimization problems. We demonstrate that the
convergence properties achieved by a self-adaptation of the mutation strength on
single-objective problems do not carry over to the multiobjective case, if a simple
dominance-based selection scheme is used. As a solution, a combined strategy is
proposed using dominance-based selection in the archive and scalarizing functions
in the working population.

3.1 Introduction

An important task in multiobjective optimization is to identify or
to approximate the set of Pareto-optimal solutions. When evolutionary
algorithms (EAs) are used for this task, their individuals should

1. converge to the Pareto set, and
2. provide a good, representative distribution of solutions.

While the latter aspect is raised only in the multiobjective case by the
existence of multiple Pareto-optimal solutions, the first point is an equally
important matter in single-objective optimization.

In the research about multiobjective evolutionary algorithms, both of
the above requirements – convergence and diversity – have received much
attention. Recent studies focus especially on their combination [1], and on the
trade-offs between these two goals [2]. However, these investigations almost
exclusively concern the selection operators, i.e., the question how to evaluate
and compare solutions in the presence of multiple objectives.

34 Laumanns

On the contrary, the variation operators have so far been of little interest
in evolutionary multiobjective optimization. Virtually all algorithms use
standard non-adaptive operators from the single objective case. This holds
in particular for the mutation operator, where it is common practice to
apply fixed mutation rates in binary coded representation, or fixed mutation
step sizes for real-coded individuals. Nevertheless, theoretical considerations
[3, 4] emphasize the importance of the mutation strength for the convergence
properties of multiobjective evolutionary algorithms.

In this chapter, we address the problem of controlling the mutation
strength of multiobjective evolutionary algorithms. The study concentrates
on the sphere function, a simple continuous model problem, and the standard
mutative self-adaptation mechanism. With this adaptation mechanism for the
mutation strength, originally proposed in Schwefel [5], evolutionary algorithms
achieve linear convergence order on the single-objective sphere model. The
major questions of the present study are:

• Can self-adaptive mutations lead to linear convergence order also in the
case of multiple objectives?

• How does the choice of the selection operator influence the convergence
behavior?

We start by recalling the concepts and different approaches of mutation
strength control in the next section. In Section 3.3, the model problem is
introduced as well as the algorithm and notion of convergence used in this
study. Sections 3.4 to 3.6 examine different selection methods and their
influence on the convergence behavior. Two major problems are identified that
prevent all selection methods based on the dominance relation from giving the
algorithms the desired convergence properties. Finally, an adaptive scalarizing
method in combination with a dominance-based archive is proposed, which
exhibits linear convergence order on the model problem and is able to
approximate solutions from diverse parts of the Pareto set.

3.2 Self-adaptive Mutation Control

Evolutionary algorithms contain parameters that can be set by the user to
influence or tune the algorithmic behavior. Choosing optimal values for these
strategy parameters is considered an important – and mainly open – research
problem in evolutionary computation. Practitioners often use rules of thumb
that are a combination of experience and extrapolation of theoretical results.

3.2.1 Methods of Mutation Control

One of the parameterization problems of evolutionary algorithms concerns the
mutation strength: With too strong variation, the evolution becomes a pure
random search; with too weak variation, no real progress can be achieved.

3 Self-adaptation and Convergence of MOEAs 35

The small region of appropriate mutation strength – sometimes referred to as
the ”evolution window” – depends on the topology of the objective function,
which is usually unknown. Thus, adaptation mechanisms for the mutation
strength are a necessity for many optimization problems.

Existing approaches to mutation control can be categorized into three
groups of increasing complexity [6]:

• Predefined schedules without feedback (deterministic),
• Feedback-based adaptation with (explicit) external control (adaptive), and
• Internal mechanisms without external control (self-adaptive).

Examples of each class can also be found in multiobjective evolutionary
algorithms. All of these, including the present study, consider continuous
search spaces and therefore a real-valued representation of the decision
variables. For real-valued representations, the term mutation strength,
sometimes rephrased as mutation step size, refers to the magnitude of change
in each variable during mutation. This is different from binary representations,
where the term mutation rate is used to express how probable it is for a certain
binary variable to be changed (inverted) in one mutation operation.

Representatives of the first group of deterministic, predefined control are,
for instance, time dependent schedules, as applied in the predator-prey EA
of Laumanns et al. [7] in a multiobjective environment. The mutation step
sizes are discounted by a constant factor each time an offspring in produced.
Convergence to the Pareto set of some simple multiobjective problems can be
achieved, if the initial step sizes are big enough and a ’conservative’ discount
factor is chosen. The disadvantages of this approach is the lack of a possibility
to increase step sizes that are too small and the need for new parameters to
be set.

A sophisticated explicit control mechanism was proposed in Kahlert [8].
The adaptation rule distinguishes nine different cases depending on the history
of the evolution. In each case, the step sizes are altered differently according to
heuristics, some of which resemble the so-called 1/5-success rule. This rule is
based on the assumption that maximum progress towards the optimum can be
achieved through step sizes leading to a success probability of approximately
20%. In the multiobjective case, however, the definition of what constitutes a
successful mutation is not as straightforward as in the single-objective case. As
discussed in Hanne [4], the probability of making cooperative steps decreases
rapidly near the Pareto set, even for small step sizes. This issue will be
discussed in detail in Section 3.4.

Self-adaptation of strategy parameters means that these parameters are
part of the genetic information encoded in the individuals and subject to
the evolutionary optimization process themselves. The self-adaptive mutation
step size control of evolution strategies (ES) has been applied to multiobjective
optimization problems in [9]. In this algorithm, the selection criterion changes
randomly over time, and individuals are supplied with a set of step sizes for
each objective function, but the convergence behavior was not investigated.

36 Laumanns

In the following, we investigate the convergence behavior of the standard
isotropic self-adaptive mutation control from evolution strategies [5] in a
multiobjective environment. The mechanism and working principle will be
explained next.

3.2.2 Self-adaptive Mutations

Every individual of an evolutionary algorithm represents a decision
alternative, a point in the search space. As we focus on continuous search
spaces, an individual contains the n decision variables in the decision vector
x = (x1, x2, . . . , xn) ∈ IRn.

Mutation is carried out by adding a normal distributed random vector.
The components of the vector are independent and identically distributed
normal random numbers with zero mean and standard deviation σ. As the
same mutation strength is used for all components, this type of mutation is
called isotropic.

For the single-objective optimization case, Rudolph [10, p.169] has shown
that using a constant mutation strength during the entire run is not a good
choice as the convergence rate will decline to the asymptotics of pure random
search. Instead, one needs to adapt the support of the mutation distribution
depending on the distance to the optimal solution. As this distance is typically
not known, the idea of self-adaptive evolution strategies is to let the mutation
strength evolve along with the decision variables. Hence, an individual a(t)

with index t is given as

a(t) = (x(t), σ(t)) ∈ IRn × IR+ (3.1)

The self-adaptation of the mutation strength is conceived by multiplying
σ with a log-normally distributed random variable. The whole mutation
operator can be described according to Rudolph [11] as

σ(t+1) = σ(t) · exp(τ · N(0, 1)), τ = n−1/2, (3.2)

x
(t+1)
i = x

(t)
i + σ(t+1) · Ni(0, 1)

yielding the offspring individual a(t+1) = (x(t+1), σ(t+1)).
For the subsequent investigations, the above self-adaptive mutation

operator will be used in different instances of the general multiobjective
evolutionary algorithms (MOEA), depicted below as Algorithm 1. The
instances differ in the way that fitness assignment and selection is performed.

3.3 The Model Problem

All investigations of this study are carried out on the so-called sphere model
and its multiobjective extension, the multi-sphere model. The sphere model
is defined as follows:

3 Self-adaptation and Convergence of MOEAs 37

Algorithm 1 General (µ, λ)-MOEA
1: t := 0
2: Generate an initial population Y (0) by randomly sampling µ vectors from the

decision space, and set σ(0) := 1 for all µ individuals of Y (0).
3: loop
4: t := t + 1
5: Variation: Generate an offspring population Z(t) by randomly sampling λ

individuals from Y (t) (with replacement) and mutate each one according to
(3.2).

6: Fitness assignment: Assign each z ∈ Z(t) the fitness value |{z′ ∈ Z(t) : z′ ≺
z}|.

7: Selection: Create Y (t+1) consisting of the best µ individuals from Z(t)

according to their fitness values, ties are broken randomly.
8: end loop

Minimize f(x) =
n∑

i=1

x2
i (3.3)

It is a convex function, where the function value only depends on the distance
to the optimum. Thus, f(x) ≡ g(||x − x∗||), where g is a function of a single
parameter and x∗ the optimum, in this case the zero vector.

The sphere model serves as a reference in many theoretic as well as
empirical studies, in particular in the context of self-adaptation. Evolutionary
algorithms with adaptive mutation strength can achieve linear convergence
order on this problem, i.e., the distance to the optimum decreases
exponentially [5, 12, 10, 13].

This function can be systematically extended to a multiobjective sphere
model by translating the optimum for each component so that the component
optima span an m − 1-dimensional sub-space in which the Pareto set is
located.1 For this study, let the multi-sphere model problem be defined as

Minimize f : IRn �→ IRm
+

where f(x) = (f1(x), f2(x), . . . , fm(x))
and fi(x) = 1 + 1

2 ||(x − ei)||2 = 1 + 1
2 (xi − 1)2 + 1

2

∑n
j=1,j �=i x2

j

(3.4)

where n is the number of decision variables, m the number of objectives and
ei denotes the ith unit vector.

The multi-sphere model is presumably the most simple multiobjective test
function for unbounded search spaces, and the Pareto set, denoted as X∗, can
be determined analytically: It is the m − 1-dimensional polyhedron of the
component optima (see Figure 3.1). For m = 1, the problem reduces to a
(translated) version of (3.3).

As the search space is unbounded, the time to reach the Pareto set depends
crucially on the starting point and the (adaptation of the) mutation strength.

1For the construction principle of this and other multiobjective test functions
see [14].

38 Laumanns

0
0.5

1
1.5

2
x10 0.5 1 1.5 2x2

0

0.5

1

1.5

2

x3

0

0.5

1

1.5

2

0 0.5 1 1.5 2 x1

x2

0

0.5

1

1.5

2

0 0.5 1 1.5 2 x1

x2

m=1 m=2 m=3

Figure 3.1. Pareto set of the multi-sphere model for m = 1, m = 2 and m = 3.

Our aim is to approximate the Pareto set of the given problem with arbitrary
precision, and we will empirically investigate the velocity with which this can
be achieved.

In mathematical terms, convergence refers to the limit behavior of
numerical sequences. Here, we are instead dealing with sets (populations),
which shall iteratively approach the Pareto set of the given optimization
problem. To capture this, we measure the distance of sets of decision vectors
(represented by a population of individuals) to the Pareto set.

Definition 1 (Distance to Pareto set). Let X∗ ∈ IRn be the Pareto set of
a given optimization problem, y be a decision vector and Y be a set of decision
vectors. The distance of y to the Pareto set is defined as

d(y, X∗) = min{||y − y′|| : y′ ∈ X∗} (3.5)

and the distance of Y to the Pareto set as

d(Y, X∗) = max{d(y, X∗) : y ∈ Y } (3.6)

Here, || · || denotes the Euclidean norm. Now, convergence to the Pareto
set can be specified with respect to the stochastic sequence of the population
distances.

Definition 2 (Convergence to the Pareto set). Let (Y (t) : t ≥ 0)
be the sequence of solution sets (populations) generated by a multiobjective
evolutionary algorithm. Then the algorithm is said to converge to the Pareto
set X∗, if the random sequence (D(t) : t ≥ 0) with D(t) = d(Y (t), X∗)
converges to zero.

Different multiobjective evolutionary algorithms with this global
convergence property have been proposed by Rudolph and Agapie [15]),
while the algorithm of Laumanns et al. [1] additionally guarantees a good
representation of the whole Pareto set.

Here, our primary concern is the convergence velocity. An appropriate local
performance measure is the progress rate [16]. The progress rate is defined in

3 Self-adaptation and Convergence of MOEAs 39

the decision space and measures the (expected) distance change from the
individuals of a population to a fixed reference point, typically the optimum.
In the multiobjective framework, the reference point generalizes to a reference
set, the Pareto set.

Definition 3 (Progress rate). Let Y (t) be the current solution set
(population) at iteration t and X∗ be the Pareto set. Then the progress rate
at time t is defined as

φ = E[d(Y (t), X∗) − d(Y (t+1), X∗)]. (3.7)

3.4 Non-elitist Strategies (“komma” Selection)

As a first experiment, a simple non-elitist (µ, λ)-MOEA, Algorithm 1, is run
on our model problem. The terminology means that µ parents are used to
create λ > µ offspring by mutation. The best µ offspring survive to the next
generation using the number of individuals by which they are dominated, the
dominance grade [17], to rank them.

Figure 3.2 displays the distance d(Y (t), X∗) of the population to the Pareto
set and the expected mutation step length

s = σ ·
√

2 · Γ ((n + 1)/2)
Γ (n/2)

(3.8)

according to [10, p. 21], where n = 100, µ = 1, λ = 10, and Γ denotes the
Gamma function.

For m = 1, the claimed linear convergence order can easily be noticed.
For the multiobjective case, however, this property seems to be valid only for
individuals that are “sufficiently far away” from the Pareto-optimal set. After
a period of exponentially decreasing population distance to the Pareto set, the
solutions suddenly start to oscillate around a small, but fixed final distance.

This mechanism can be explained as follows. For individuals far away
from the Pareto set the gradients of the different objective functions are
nearly parallel, so the individuals can easily make a cooperative step, i.e.,
a mutation that improves all objective values simultaneously. This situation
changes drastically in the vicinity of the Pareto set. When the individuals
move closer to the Pareto set, the angle between the gradients approaches
180◦, and the region of cooperative steps shrinks (see Figure 3.3).

To verify this conjecture, we would have to derive the success probability
and the progress rate analytically and analogous to the existing theory in the
single-objective case. But as in the multiobjective case both terms depend
on the exact position of the search point, we only estimate these values by
a statistical experiment. The idea is to sample individuals randomly from
the search space, mutate them with a certain mutation strength σ and
record whether this mutation has been successful (leading to a solution that

40 Laumanns

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2000 4000 6000 8000 10000

generation t

d(Y(t),X*)
s(t)

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2000 4000 6000 8000 10000

generation t

d(Y(t),X*)
s(t)

Figure 3.2. Distance d(Y (t), X∗) and expected mutation step length s for the
(1, 10)-MOEA and n = 100 over time. The top graph shows the single-objective
case (m = 1) and the bottom graph the multiobjective case with m = 2.

dominates the parent) and what progress has been achieved. The results are
displayed in Figure 3.4. For k randomly initialized individuals xi and their
mutants x′

i, the plots show the success frequency

ŵ =
1
k

k∑
i=1

1(x′
i ≺ xi) (3.9)

and the average (normalized) progress for successful mutations

φ̂′ = ŵ · n ·
k∑

i=1

d(x′
i, X

∗) − d(xi, X
∗)

d(xi, X∗)
(3.10)

over the (normalized) step size

3 Self-adaptation and Convergence of MOEAs 41

grad(f (x’’))1

x’

grad(f (x’))2

grad(f (x’’))1

grad(f (x’’))2

x’’

grad(f (x’))1

Figure 3.3. Success regions of mutations far away and close to the Pareto set. The
black circles denote the optima of the individual functions, the line in between the
Pareto set.

σ′ = n · σ

d0
(3.11)

for mutations of randomly chosen individuals with a fixed expected distance
d0 to the Pareto set.

The graphs also indicate that in the single-objective case the success rate
and the normalized progress are functions of the normalized mutation strength
only and do not depend on the distance to the optimum, as proven by Beyer
et al. [12]. A detailed explanation for the working mechanism of the self-
adaptation of the mutation strength can be found in Rudolph [10, p. 196f].

In the multiobjective case, the decrease of the success rate close to the
Pareto set makes it increasingly difficult to proceed further. The probability
that the offspring population contains an individual better than the parent is
so low that in many cases the population will move away from the Pareto set.
Even raising the number of offspring per parent does not help as the plots in
Figure 3.5 show.

In conclusion, it was found that a non-elitist strategy using a fitness
assignment based only on the dominance relation does not converge to the
Pareto set. It only exhibits a constant progress rate up to a certain distance,
after which the average progress rate is zero and the population starts to
oscillate. We will investigate next, whether this problem can be solved by
introducing elitism into the selection operator.

3.5 Pseudo-elitist Strategies (“plus” Selection)

In a (µ + λ)-EA the selection operator takes into account both the parent
and the offspring population and selects the best µ individuals out of these
µ + λ candidates as the parents of the next generation. Hence, line 6 and 7 of
Algorithm 1 must be changed to

42 Laumanns

0.01
0.1

1
10

100
sigma * n / dist 0.001

0.01
0.1

1
10

100
1000

dist

0

0.1

0.2

0.3

0.4

0.5

0.6

Success Frequency

0.01
0.1

1
10

100
sigma * n / dist 0.001

0.01
0.1

1
10

100
1000

dist

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Normalized Progress

Figure 3.4. Estimated success probabilities ŵ (top) and normalized progress φ̂′

(bottom) for mutations (step size σ′) of individuals with distance dist to the
optimum for m = 1 (upper surfaces, dashed lines) and m = 2 (lower surfaces,
solid lines), n = 100.

6: Fitness assignment: Assign each z ∈ Y (t) ∪ Z(t) the fitness value
|{z′ ∈ Y (t) ∪ Z(t) : z′ ≺ z}|.

7: Selection: Create Y (t+1) consisting of the best µ individuals from
Y (t) ∪ Z(t) according to their fitness values, ties are broken
randomly.

3 Self-adaptation and Convergence of MOEAs 43

1e-06

0.0001

0.01

1

100

10000

1e+06

0 200 400 600 800 1000

generation t

lambda=10
lambda=100

lambda=1000
lambda=10000

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2000 4000 6000 8000 10000

generation t

lambda=10
lambda=100

lambda=1000
lambda=10000

Figure 3.5. Distance d(Y (t), X∗) and for different λ values and m = 2 over time,
n = 10 (top) and n = 100 (bottom).

The graphs in Figure 3.6 show the same experiment as before, now using
a (1 + 10)-MOEA. For m = 1, stagnation periods are visible, which can
be alluded to individuals with good decision variables, but unfavorable large
mutation step sizes. In a plus-strategy, such individuals are only replaced if
a better individual is found, which might take very long because too large
mutation step sizes imply a low success probability. Disappointingly, the
results for m = 2 are not much different from the previous case with “komma”
selection. We even notice an occasional increase in the distance, but how is
this possible in an elitist strategy?

The answer is that a “plus”-strategy is no longer an elitist strategy in a
multiobjective environment. For m ≥ 2, the objective space is only partially
ordered, and the fitness assignment based on the dominance relation among
the individuals is not a function of the individuals’ decision variables alone,

44 Laumanns

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2000 4000 6000 8000 10000

generation t

d(Y(t),X*)
s(t)

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2000 4000 6000 8000 10000

generation t

d(Y(t),X*)
s(t)

Figure 3.6. Distance d(Y (t), X∗) and expected mutation step length s for the
(1 + 10)-MOEA and n = 100 over time. The top graph shows the single-objective
case (m = 1) and the bottom graph the multiobjective case with m = 2.

but is relative to all other individuals in the population. Thus, a temporary
deterioration of the population can occur, as explained in Figure 3.7.

Zitzler et al. [18] proved that in fact no fitness assignment can be
invented that gives a total order on the individuals and complies with the
dominance relation. Therefore, no “plus”- strategy with dominance-based
fitness assignment can be justly called elitist, and we have to consider other
selection techniques.

3 Self-adaptation and Convergence of MOEAs 45

Figure 3.7. A possible deterioration of the population from iteration t to t +2 of a
(µ+λ)-MOEA with µ = 3 and λ = 1. In iteration t, the three individuals in Y (t) plus
the new offspring individuals are all mutually non-dominated, and one randomly
chosen individual has to be deleted to construct the new population Y (t+1). In
iteration t + 1, another new individual is produced, which is also mutually non-
dominated with the three parent individuals in Y (t+1). Again, one individual is
chosen at random to be deleted. As a result, one of the surviving individuals at the
end of iteration t + 1 is dominated by another individual that was deleted in the
previous iteration. It is noticable that the resulting population Y (t+2) is obviously
worse than Y (t); the deterioration is marked with an arrow.

3.6 Elitist Strategies

The use of elitism in multiobjective optimization was found advantageous in
many case studies, and several elitist strategies have been proposed [19]. Most
of these approaches make use of a secondary population, or archive, in which a
certain number of non-dominated solutions can be stored. Nevertheless, it has
recently been shown that most of these algorithms, like the “plus”-strategy of
the previous section, do not preclude the problem of temporary deterioration,
and therefore do not converge to the Pareto set [1].

3.6.1 An Elitist Strategy Based on Dominance

In Rudolph and Agapie [15] a selection mechanism was proposed that leads
to a globally convergent multiobjective EA. Sufficient conditions to fulfill this
are:

• A non-dominated parent can only be discarded from the population if it
is dominated by an offspring.

• If a previously non-dominated parent is to be removed, at least one of the
dominating offspring must in turn be included in the new population.

46 Laumanns

1e-06

0.0001

0.01

1

100

10000

1e+06

0 200 400 600 800 1000

generation t

d(Y(t),X*)
s(t)

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2000 4000 6000 8000 10000

generation t

d(Y(t),X*)
s(t)

Figure 3.8. Distance d(Y (t), X∗) and expected mutation step length s for the elitist
algorithm AR-1 [15], n = 10 (top) and n = 100 (bottom).

Figure 3.8 displays the results of the elitist algorithm AR-1 from Rudolph
and Agapie [15], which fulfills the above criteria. It can be seen that the
progress is now always non-negative, and temporary deterioration does not
occur. However, the progress rate in the vicinity of the Pareto set is still very
low.

These results indicate that it might actually be impossible to achieve linear
convergence order with any selection scheme based purely on the dominance
relation. In the vicinity of the Pareto set, the probability to produce a
dominating individual decreases too rapidly.

Other selection schemes for evolutionary multiobjective optimization are
population-based approaches and aggregating approaches [17]. In population-
or criterion-based methods, the different objectives determine the selection of
different parts of the population (like in VEGA [20]) or, in random succession,

3 Self-adaptation and Convergence of MOEAs 47

of the entire population (as in the algorithms of Kursawe [9] and Laumanns et
al.[7]). In Rudolph [3] it was proven that such a (1+1)-MOEA with randomly
changing selection criterion is able to approach the Pareto set exponentially
fast, but only if the mutation strength is chosen proportional to the distance
to the Pareto set. As long as these distances are unknown, this strategy is not
practicable.

Aggregating approaches combine the objective function values via a
scalarizing function. The evolutionary algorithm is allowed to solve a scalar
surrogate problem, and it can be expected to exhibit the desired linear
convergence order, provided that a usefully parameterized scalarizing function
is applied. The disadvantage is that the scalarizing function implicitly defines
its optimum, and only this optimum, and no other point on the Pareto set,
will be obtained in the end. Multiple runs with different parameters can
be applied to reach different points, but for smooth scalarizing functions, it
cannot be guaranteed that all parts of the Pareto set are reachable, regardless
of its parameterization. Since the self-adaptation mechanism for the mutation
strength does not work for non-smooth versions, plain aggregating approaches
are not considered here.

3.6.2 A Mixed Strategy Using Adaptive Scalarizing Functions

While dominance-based selection strategies enable the algorithm to enter the
vicinity of the Pareto set quickly, selection based on scalarizing functions
allows for linear convergence order. This raises the question whether both
approaches can be combined to fulfill both tasks, and to design an algorithm
that is able to converge exponentially fast to any element of the Pareto set.

The idea is to use the dominance-based selection in the first part of the
run to locate any arbitrary region of the Pareto set. Thereafter, when this
selection method becomes too strong, we switch to an aggregating approach
and let the algorithm converge further until the desired precision is reached.
For a practical implementation the following questions need to be resolved:

1. How do we determine which selection method to apply, not knowing the
current location of the population in the search space?

2. How do we choose an appropriate scalarizing function that lets the
algorithm converge locally within the region defined by the first part of
the run?

We address the first question by simply applying both selection methods
at the same time. While aggregated function values are used to guide the
selection of a standard (1, λ)-EA, all generated solutions are passed to an
archive that applies the dominance-based selection and always stores one non-
dominated solution off-line (see Figure 3.9). This archive, in turn, provides the
(local) reference point that is needed for an adaptive scalarizing function. For
this we assume a discretization of the objective space by a hyper-grid, which

48 Laumanns

Figure 3.9. Generating solutions using aggregation-based selection and together
with an archive using dominance-based selection.

has already been used in the archiving method of Laumanns et al. [1]. Given
a particular individual x ∈ A(t), this reference point is calculated as

r(x) = (r1, r2, . . . , rm) (3.12)
ri = (1 + ε)bi (3.13)

bi = � log fi(x)
log (1 + ε)

� (3.14)

Then, the Euclidean distance to the reference point is used as the selection
criterion in the (1, λ)-EA.

Φ(x) = ||x − r(x)|| (3.15)

This combined strategy is described below as Algorithm 2. Figure 3.10 displays
the population distances of several runs of this (1, 10, ε)-MOEA for ε = 0.01
and n = 100. The plots visualize that linear convergence order is achievable
even in the critical region close to the Pareto set. The value of ε determines
the degree of resolution in the discretization of the objective space and hence
the position of possible reference points. Thereby it also fixes the maximum
number of different local scalarizing functions available. As each scalarizing
function has its own optimum, the ε value can be used to tune the number of
different target points in the Pareto set to which the algorithm can converge.
Figure 3.11 shows the distribution of the final search points of 100 independent
runs in the Pareto set. It can be seen that the algorithm is able not only to
converge quickly, but also with a reasonable diversity of the final solutions.

3.7 Conclusion

In this chapter, the convergence velocity of multiobjective evolutionary
algorithms with different selection methods on a simple continuous model

3 Self-adaptation and Convergence of MOEAs 49

Algorithm 2 Combined (1, λ, ε)-MOEA
1: t := 0
2: Generate an initial individual y(0) by randomly sampling a vector from the

decision space, and set σ(0) := 1.
3: A(0) := {y(0)}
4: loop
5: t := t + 1
6: Variation: Generate an offspring population Z(t) by creating λ copies of y(t)

and mutating each copy according to (3.2).
7: for all z ∈ Z(t) do
8: if z ≺ a then
9: Archive update: A(t) := z

10: end if
11: end for
12: Fitness assignment: Assign each z = (x, σ) ∈ Z(t) the fitness value Φ(x)

according to (3.15).
13: Selection: Set y(t+1) to the best individual from Z(t) according to their fitness

values, ties are broken randomly.
14: end loop

problem has empirically been investigated. The model problem is a
multiobjective generalization of the sphere model, which allows to use the
existing theoretical results from the single-objective case as a reference point.
As in the single-objective case, an adaptation of the mutation strength is
mandatory to achieve linear convergence order on the model problem and to
approximate the optimum with arbitrary precision.

It was shown that none of the existing selection methods based on the
dominance relation can lead to the desired convergence behavior. This is
mainly due to the following two problems that arise in a multiobjective setting,
the low success probability close to the Pareto set and the problem of successive
deterioration:

1. The success probability, i.e., the probability to create a dominating
individual by mutation, decreases drastically in the vicinity of the Pareto
set.

2. The partial order of the objective vectors makes a fitness assignment based
on Pareto dominance ambiguous. Selection methods based on such fitness
values can lead to a deterioration of the population.

For the different selection methods, the following hierarchy is obtained:

• The non-elitist (“komma”) strategy oscillates around a fixed final distance,
and the average progress is zero. At this point, many offspring populations
are produced, where even the best individuals are farther away from the
Pareto set than their parents.

• The “plus” strategies do not significantly improve this situation, although
the parents are now included in the selection operation. In case of

50 Laumanns

1e-06

0.0001

0.01

1

100

10000

1e+06

0 200 400 600 800 1000

generation t

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2000 4000 6000 8000 10000

generation t

Figure 3.10. Distances d(Y (t), X∗) of 10 independent runs of Algorithm 2, n = 10
(top) and n = 100 (bottom).

incomparable individuals, the selection operator can pick a random subset
of the individuals with the best dominance-based fitness values, so that
a non-dominated parent is not guaranteed to be included in the next
generation. Thus, successive deterioration can occur, and this strategy
cannot be called elitist in a multiobjective context.

• A selection operator that removes a parent individual if and only if a
dominating individual is in turn included in the next generation is an
elite-preserving strategy also in the multiobjective case. For such an elitist
strategy, it is impossible to move farther away from the Pareto set, and
hence the progress is always positive. However, the progress also declines
to almost zero because of the low success probability.

• Finally, a combined strategy was designed that uses dominance-based
selection in the archive and adaptive scalarizing functions to guide the

3 Self-adaptation and Convergence of MOEAs 51

0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96

x1

0

1

2

3

4

5

Figure 3.11. Histogram of variable x1 of the final solution of 100 independent runs
of Algorithm 2 with n = 2 and m = 2.

selection in the working population. The use of a scalarizing function keeps
the success probability constant, even in the vicinity of the Pareto set, and
leads to the desired linear convergence order. The dominance-based archive
provides the reference points for the constant adaptation of the scalarizing
function and ascertains that all regions of the Pareto set are reachable.
The number of possible attractors can be tuned by the ε parameter.

The two fundamental problems of dominance-based selection mentioned
above form a dilemma: if successive deterioration is to be prevented, only
dominating individuals can be accepted, but the probability to produce these
individuals declines too rapidly in the vicinity of the Pareto set.

It appears that this dilemma can only be overcome by resorting to the use
of scalarizing functions. As plain aggregating approaches are not suitable to
find points in any arbitrary regions of the Pareto set, an adaptive scalarizing
method in combination with a dominance-based archive provides a viable
solution. The single-parent strategy proposed in this study can be used in
multiple independent runs to randomly find points in all regions of the Pareto
set. It would be worthwhile to investigate a strategy with a multi-membered
archive and many (1, λ)-strategies running concurrently to converge to many
different elements of the Pareto set in a single run. Such an archiving method
was proposed in Laumanns et al. [1] and could be used to maintain a variety
of search directions at the same time.

52 Laumanns

Acknowledgments

Parts of this study stem from a joint work with Günter Rudolph and Hans-
Paul Schwefel [21, 22]. The author would like to thank the anonymous
reviewers for their helpful comments.

References

1. Laumanns M, Thiele L, Deb K, and Zitzler E, Combining Convergence
and Diversity in Evolutionary Multiobjective Optimization. Evolutionary
Computation, 10(3): 2002; 263-282.

2. Bosman PAN and Thierens D, The Balance Between Proximity and Diversity
in Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary
Computation, 7(2):12003; 74-188.

3. Rudolph G, On a Multi-objective Evolutionary Algorithm and its Convergence
to the Pareto set. In IEEE Int’l Conf. on Evolutionary Computation (ICEC’98),
pp. 511-516. IEEE Press, 1998.

4. Hanne T, Global Multiobjective Optimization with Evolutionary Algorithms:
Selection Mechanisms and Mutation Control. In E. Zitzler et al.(eds),
Evolutionary Multi-Criterion Optimization (EMO 2001), Lecture Notes in
Computer Science Vol. 1993, pp. 197-212, Berlin, Springer, 2001.

5. Schwefel HP, Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie. Basel Birkhäuser, 1977.

6. Hinterding R, Michalewicz Z, and Eiben AE, Adaptation in Evolutionary
Computation: A Survey. In IEEECEP: Proceedings of The Forth IEEE
Conference on Evolutionary Computation, pp. 65-69, Piscataway, New Jersey,
IEEE Press, 1997.

7. Laumanns M, Rudolph G, and Schwefel HP, A Spatial Predator-Prey Approach
to Multi-objective Optimization: A Preliminary Study. In A. E. Eiben et al.
(eds), Parallel Problem Solving from Nature (PPSN V), Lecture Notes in
Computer Science Vol. 1498, pp. 241-249. Springer, 1998.

8. Kahlert J, Vektorielle Optimierung mit Evolutionsstrategien und Anwendungen
in der Regelungstechnik. Düsseldorf VDI Verlag, 1991.

9. Kursawe F, A Variant of Evolution Strategies for Vector Optimization. In H.-P.
Schwefel and R. Männer (eds), Parallel Problem Solving from Nature (PPSN),
pp. 193-197. Springer, 1991.

10. Rudolph G, Convergence Properties of Evolutionary Algorithms. Hamburg
Verlag Dr. Kovač, 1997.

11. Rudolph G, Evolution Strategies. In Thomas Bäck, D. B. Fogel, and Zbigniew
Michalewicz (eds), Handbook of Evolutionary Computation, pages B1.3:1-3,
Bristol, UK, IOP Publishing and Oxford University Press, 1997.

12. Beyer HG, Toward a Theory of Evolution Strategies: Self-adaptation.
Evolutionary Computation, 3(3): 1995; 311-347.

13. J. Jägersküpper, Analysis of a Simple Evolutionary Algorithm for Minimization
in Euclidian Spaces. In International Colloquium on Automata, Languages, and
Programming (ICALP 2003), Lecture Notes in Computer Science Vol. 2719,
Springer, 2003.

3 Self-adaptation and Convergence of MOEAs 53

14. Deb K, Thiele L, Laumanns M, and Zitzler E, Scalable Test problems for
Evolutionary Multi-objective Optimization. Chapter 6 of this volume.

15. Rudolph G and Agapie A, Convergence Properties of Some Multi-objective
Evolutionary Algorithms. In Congress on Evolutionary Computation (CEC
2000), volume 2, pp. 1010-1016. IEEE Press, 2000.

16. Beyer HG and Rudolph G, Local Performance Measures. In Thomas Bäck,
D. B. Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary
Computation, pages C2.4:1-27, Bristol, UK, IOP Publishing and Oxford
University Press, 1997.

17. Fonseca CM and Fleming PJ, An Overview of Evolutionary Algorithms in
Multiobjective Optimization. Evolutionary Computation, 3(1): 1995; 1-16.

18. Zitzler E, Thiele L, Laumanns M, Foneseca CM, and Grunert da Fonseca V,
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation, 7(2): 2003; 117-132.

19. Deb K, Multi-objective Optimization Using Evolutionary Algorithms. Chichester,
UK, Wiley, 2001.

20. Schaffer JD, Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. In JJ. Grefenstette (ed), Proceedings of an International Conference
on Genetic Algorithms and Their Applications, pp. 93-100, 1985.

21. Laumanns M, Rudolph G, and Schwefel HP, Adaptive Mutation Control in
Panmictic and Spacially Distributed Multi-objective Evolutionary Algorithms.
In PPSN/SAB Workshop on Multiobjective Problem Solving from Nature
(MPSN), 2000.

22. Laumanns M, Rudolph G, and Schwefel HP, Mutation Control and Convergence
in Evolutionary Multi-objective optimization. In MENDEL 2001. 7th Int. Conf.
on Soft Computing, pp. 24-29. Brno University of Technology, 2001.

4

A Simple Approach to Evolutionary
Multiobjective Optimization

Christine L. Mumford-Valenzuela

Summary. This chapter describes a Pareto-based approach to evolutionary
multiobjective optimization, that avoids most of the time-consuming global
calculations typical of other multi-objective evolutionary techniques. The new
approach uses a simple uniform selection strategy within a steady-state evolutionary
algorithm (EA) and employs a straightforward elitist mechanism for replacing
population members with their offspring. Global calculations for fitness and
Pareto dominance are not needed. Other state-of-the-art Pareto-based EAs depend
heavily on various fitness functions and niche evaluations, mostly based on Pareto
dominance, and the calculations involved tend to be rather time consuming (at
least O(N 2) for a population size, N). The new approach has performed well on
some benchmark combinatorial problems and continuous functions, outperforming
the latest state-of-the-art EAs in several cases. In this chapter the new approach
will be explained in detail.

4.1 Introduction

This chapter concentrates on a simple approach to evolutionary multiobjective
optimization that avoids most of the time-consuming global calculations
typical of many other Pareto-based evolutionary approaches. The basic
algorithm described here is called SEAMO (a Simple Evolutionary Algorithm
for Multiobjective Optimization), and although this new technique has not
as yet been very widely tested, it has proven successful on some benchmark
combinatorial problems and continuous functions, outperforming other state-
of-the-art evolutionary algorithms (EAs) in several instances [1]. In addition
to fast execution, the simplicity of the new algorithm makes it relatively quick
and easy to implement, reducing the development time needed for prototyping
and testing new multiobjective applications. If required, more sophisticated
Pareto-based evolutionary techniques can be incorporated following an initial
proof-of-concept.

The main purpose of the chapter is to introduce and explain the key
concepts involved in the new approach using some simple applications as

56 Mumford-Valenzuela

examples. In addition, in order to justify the approach, a summary of some
preliminary comparative studies will be included.

The discussion will begin in Section 4.2 with a brief overview of Pareto-
based multiobjective optimization, moving on to multiobjective evolutionary
techniques in Section 4.3. Section 4.3 also includes a short preview of
SEAMO, concentrating on its main features and explaining how it differs
from other evolutionary approaches. Following this, Section 4.4 describes the
multiple knapsack problem and introduces a sample test problem with two
knapsacks. Section 4.5 describes the SEAMO algorithm in detail and this
is followed in Section 4.6 by an illustration of SEAMO’s operation through
the test problem introduced in Section 4.4. Section 4.7 summarizes SEAMO’s
performance on some large multiple knapsack problems. Having studied a
combinatorial application, Section 4.8 will explain how the techniques can
be adapted to handle some continuous multiobjective functions. Some results
for the continuous functions are summarized in Section 4.9. Full details of
the representations and genetic operators are given for the combinatorial and
continuous problems.

4.2 Pareto-Based Multiobjective Optimization

Many real-world applications require the simultaneous optimization of several
(often competing) objectives. For example, in the vehicle routing problem
(VRP) the determination of optimum delivery routes to a set of customers
can involve a number of different objectives (Figure 4.1), for example the total
distance traveled (or time taken), the number of vehicles used, and the number
of satisfied customers (i.e. deliveries that have taken place to customers within
previously agreed time windows). There are three principal methods of dealing
with multiple objectives:

1. Combine all the objectives into a single scalar value, typically as a
weighted sum, and optimize the scalar value.

2. Solve for the objectives in a hierarchical fashion, optimizing for a first
objective then, if there is more than one solution, optimize these solutions
for a second objective, and repeat for a third etc. if appropriate.

3. Obtain a set of alternative, non-dominated solutions, each of which must
be considered equivalent in the absence of further information regarding
the relative importance of each of the objectives.

The first and the second methods both depend on making a priori
assessments to weigh up the relative importance of the various objectives. The
third method, on the other hand, involves no such (arbitrary) judgments, and
produces a set of viable alternatives from which a decision maker can make an
informed selection at a later stage. Ideally each alternative solution produced
by method 3 will be optimal in the sense that it will not be possible to improve
the value of any one of the objectives, in a given solution vector, without

4 A Simple Approach to Evolutionary Multiobjective Optimization 57

Figure 4.1. Vehicle routing can be a problem.

simultaneously degrading the quality of one or more of the other objectives.
Such a solution set is called the Pareto-optimal set, and the objective values in
the set are located at the Pareto front. SEAMO is an evolutionary algorithm
that has been designed to produce approximate Pareto sets. Thus method 3 is
the way we will deal with multiple objectives in the remainder of this chapter.

4.3 An Overview of Evolutionary Techniques for
Multiobjective Optimization

Evolutionary algorithms (EAs) are ideally suited for multiobjective
optimization problems because they produce many solutions in parallel.
However, traditional approaches to EAs require scalar fitness information
and converge on a single compromise solution, rather than on a set of viable
alternatives. An effective Pareto-based multiobjective EA will converge on a
solution set with the following properties:

• solutions that are ”good”, i.e. close to the Pareto front;
• solutions that are ”evenly spread” along the Pareto front;

58 Mumford-Valenzuela

• solutions that are ”widely spread” - i.e. a good range.

To seek solution sets with the above properties, most researchers rely on
selection that uses some form of Pareto-based fitness assignment. This idea,
which was first proposed by Goldberg [2], is based on dominance ranking and
assigns equal probability of reproduction to all non-dominated individuals.
Solutions can be further improved using techniques such as fitness sharing
[2], niches [3, 4] and auxiliary populations [5, 6]. Unfortunately most of these
approaches carry a high computational cost.

The present approach relies on very much simpler techniques. It disposes
of all selection mechanisms based on fitness values and instead uses a
straightforward uniform selection procedure (i.e. each population member has
an equal chance of being selected). Thus no dominance ranking is required. In
the new approach improvements to the population and progress of the genetic
search depend entirely upon a replacement strategy that follows a few simple
rules:

1. parents are (normally) replaced only by their own offspring;
2. offspring only replace parents if the offspring are superior – thus the

scheme is elitist;
3. duplicates in the population are deleted.

SEAMO depends on rules 1 and 3 to maintain diversity and prevent premature
convergence and on rule 2 to progress the genetic search and also ensure that
the best solutions are not lost.

Replacing parents only with their own offspring (rule 1) means that
the new individuals tend to be genetically very similar to the population
members they are replacing. Alternative replacement schemes, on the other
hand (replacing one of the weaker members of the population for example),
can lead to a much more rapid propagation of duplicated genetic material, and
thus to premature convergence. SEAMO further promotes genetic diversity by
deleting duplicates (rule 3) as soon as they arise in the population. Ideally,
an EA should discard genotypic duplicates. (A genotypic duplicate is an
individual with exactly the same genetic makeup as another individual.)
Unfortunately the pairwise comparisons between chromosomes needed to
detect genotypic duplicates tend to be rather time consuming unless the
chromosomes are very short. Current implementations of SEAMO delete
phenotypic duplicates, i.e. individuals with the same solution vectors as
other individuals. As the solution vectors are usually rather shorter than the
chromosomes, this tends to be a very much faster process. Deleting phenotypic
duplicates will certainly eliminate genotypic copies. Unfortunately it can also
lead to the deletion of genetically diverse individuals if, by chance, they
produce identical solution vectors. In practice this does not seem to arise
very often though.

Rule 2 controls the overall progress of the genetic search, and ensures that
the population as a whole improves over time (hence ensuring that solutions

4 A Simple Approach to Evolutionary Multiobjective Optimization 59

are ”good”). A ”superior” offspring in rule 2 is defined (most of the time) as an
offspring that dominates one or other of its parents (i.e. one of the objectives
in its solution vectors is better than its parent, and all the other objectives
are at least as good). An exception is made when an offspring arises with
a new global best value for just one of the objectives in its solution vector.
When this occurs, the dominance condition is relaxed, and the new individual
is assimilated into the population (hence ensuring that solutions are ”widely
spread”). The new individual usually replacing one of its parents (this will
be explained in Section 4.5). Rule 2 ensures that the EA itself is elitist, thus,
unlike Corne et al. [5] and Zitzler and Thiele [6] no archive population is
needed.

We shall see later in this chapter that SEAMO’s subtle techniques appear
to work well in producing solutions that are both ”good” and ”widely spread”,
and thus meet two of the three criteria for effective Pareto-based EAs specified
at the start of the current section. However, current implementations of
SEAMO lack a specific mechanism to ensure that the solutions are ”evenly
spread”, and this can cause difficulties when applying SEAMO to certain
functions.

In common with other EAs, successful multiobjective implementations
require well-designed representation systems for individual problems and
also genetic operators that are appropriate for the task. Recombination
(crossover) operators can be particularly problematic. At worst an EA may
waste vast quantities of time generating invalid or illegal offspring, and even
in a superficially successful system, a crossover may produce an offspring
that bears very little phenotypical resemblances to either of its parents.
As the similarity between parents and their offspring remains one of the
main tenets of evolution, a poorly designed or inappropriate recombination
operator can turn an otherwise perfect EA into an implementation that
is no more effective than a random search. Unfortunately there does not
appear to be a known recipe for producing effective representation schemes,
either for single or multiobjective EAs. Experience and intuition can help,
but provide no guarantees! Thus the success of SEAMO, or any other EA
(multiobjective or otherwise) on a particular application, depends very much
on the representation scheme chosen for the application. Additionally it is
necessary to tune various parameters of the EA such as population size,
crossover and mutation rates, to produce a good performance.

Assessing the performance of EAs can be very difficult in practice. Even
when the same data sets are used to compare EAs with each other or with
alternative approaches, it can be dangerous to draw firm conclusions as to
which algorithm is the best. In addition to making sound (or unsound)
choices for representations and genetic operators, there are many other issues
to consider, and choices to be made. How long do you let the EAs run?
What population sizes and crossover rates do you set? Some EAs converge
quickly, while others take longer but produce better results in the end. The
algorithms are differently sensitive to parameter settings such as population

60 Mumford-Valenzuela

sizes and crossover rates, so it is not easy to ensure fairness, especially when
comparing an unfamiliar EA that somebody else has written with one of your
own (that you would obviously like to win). Notwithstanding the difficulties
associated with representations, varying convergence rates and parameter
settings, comparisons between EAs (or other metaheuristic approaches such
as simulated annealing) are frequently based on each algorithm performing
an equal number of fitness or objective function evaluations. This is a very
crude method, however, as it ignores important run-time issues such as time
complexity.

Comparisons between EAs that carry out multiobjective optimizations
are even more problematic. Here we have the added difficulty of assessing the
quality of each algorithm by examining a set of vectors, instead of examining
the single scalar value obtained from a ”standard EA”. Although a range of
performance measures have been derived by various researchers, there is no
general agreement upon their usefulness. For vectors consisting of just two
objectives it is possible to represent the results quite effectively using 2D
plots, and comparisons can be made quite easily if plots for a small number
of different algorithms are placed on the same diagram, provided that not too
many of the points overlap.

4.4 The 0-1 Multiple Knapsack Problem

Figure 4.2. The same objects may have different weights in each knapsack.

4 A Simple Approach to Evolutionary Multiobjective Optimization 61

Figure 4.3. The same objects may have different profits in each knapsack.

The 0-1 multiple knapsack problem (0-1 MKP) is a maximization problem.
It is a generalization of the 0-1 simple knapsack problem, and is a well-known
member of the NP-hard class of problems. In the simple knapsack problem, a
set of objects O = {o1, o2, o3, ..., on} and a knapsack of capacity C are given.
Each object oi has an associated profit pi and weight wi. The objective is
to find a subset S ⊆ O such that the weight sum over the objects in S does
not exceed the knapsack capacity and yields a maximum profit. The 0-1 MKP
involves m knapsacks of capacities c1, c2, c3, ..., cm. Every selected object must
be placed in all m knapsacks, although neither the weight of an object oi nor
its profit is fixed, and will probably have different values in each knapsack
(see Figures 4.2 and 4.3). A small problem with 10 objects and two knapsacks
is defined in Table 4.1.

A possible solution to the ten object, two knapsack problem from Table
4.1 is {2, 3, 4, 5, 6, 7, 9}, which involves packing objects number 2, 3, 4, 5,
6, 7 and 9 into the two knapsacks. To evaluate the solution vector for this
problem requires that we first ensure that neither knapsack capacity has been
exceeded. The total weight of the given objects when packed into knapsack
1 is 8 + 2 + 7 + 3 + 6 + 1 + 9 = 36 units, and in knapsack 2 they weigh
4+2+4+9+5+4+3 = 31 units. In neither case is the knapsack capacity (38 and
35) exceeded. We then work out the total profit for each knapsack by adding
together the profits for each of the items packed. The total profit in knapsack
1 is 7+4+5+6+2+7+7 = 38, and in knapsack 2 is 9+1+5+3+8+2+1 = 29.
The solution {2, 3, 4, 5, 6, 7, 9} yields a solution vector of {38, 29}, the profits
in knapsacks 1 and 2 respectively. The full Pareto set, for this small problem, is
presented in Table 4.2. The solutions were discovered using a simple exhaustive
search technique which took only a few seconds to run.

62 Mumford-Valenzuela

Table 4.1. A sample problem with ten objects and two knapsacks.

Object number
Knapsack 1

Capacity = 38
Knapsack 2

Capacity = 35

Weight Profit Weight Profit

1 9 2 3 3
2 8 7 4 9
3 2 4 2 1
4 7 5 4 5
5 3 6 9 3
6 6 2 5 8
7 1 7 4 2
8 3 3 8 6
9 9 7 3 1
10 3 1 7 3

Table 4.2. The Pareto set for the sample problem with ten objects and two
knapsacks.

Knapsack 1 Profit knapsack 2 Profit Objects in Knapsacks

39 27 {2, 3, 4, 5, 7, 8, 9}
38 29 {2, 3, 4, 5, 6, 7, 9}
36 30 {2, 3, 5, 6, 7, 8, 9}
35 32 {2, 3, 4, 6, 7, 8, 9}
34 33 {2, 3, 4, 5, 6, 8, 9}
32 34 {2, 4, 6, 7, 8, 9, 10}
29 35 {1, 2, 3, 4, 5, 6, 8}
27 36 {1, 2, 4, 6, 7, 8, 10}

4.5 An Introduction to SEAMO

The basic SEAMO algorithm is outlined in Figure 4.4. The goal of any Pareto-
based multiobjective EA is to breed a widely and evenly spread population
of solution vectors, as close to the Pareto front as possible. The dual aims
pursued by SEAMO during its search process are: (1) to move the current
solutions in the population ever closer to the Pareto front, and (2) to widen
the spread of the solution set. Improvements in both (1) and (2) are achieved
by the replacement strategy used in SEAMO, and not by the selection process.
It was noted previously that SEAMO currently has no specific mechanism for
ensuring that the solutions are evenly spread.

The selection procedure for SEAMO is very simple and does not rely
on fitness calculations or dominance relationships. The crossover rate is
100%, which means that parents are always selected in pairs. The algorithm
sequentially selects every individual in the population to serve as the first
parent once, pairing it with a second parent that is selected at random

4 A Simple Approach to Evolutionary Multiobjective Optimization 63

Procedure SEAMO
Begin

Generate N random individuals {N is the population size}
Evaluate the objective vector for each population member and store it
Record the global best-so-far for each objective function in the vector
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Evaluate the objective vector produced by the offspring
If any element of the offspring’s objective vector

improves on a global best-so-far
Then the offspring replaces one of the parents

(or occasionally another individual)
and best-so-far is updated

Else If offspring dominates one of the parents
Then it replaces it

(unless it is a duplicate, then it is deleted)
Endfor

Until stopping condition satisfied
Print all non-dominated solutions in the final population

End

Figure 4.4. Algorithm 1. A Simple Evolutionary Algorithm for Multiobjective
Optimization (SEAMO).

(uniformly). A single crossover is then applied that produces one offspring,
and this is followed by a single mutation. Objective values and dominance
relationships are not considered at this stage. They are applied later, at
the replacement stage, and it is here, rather than during selection, that the
pressure for improvement is applied.

As explained previously, the replacement of a parent by its offspring is
considered whenever an offspring is deemed to be superior to that parent.
This idea, called pre-selection when it was first suggested by Cavicchio [7],
was originally used for EAs with scalar objective functions. The technique
easily extends to Pareto-based multiobjective optimization, however. In the
SEAMO algorithm, the superiority test is applied first of all to the first parent,
and then to the second parent if that fails. Usually superiority is measured as a
dominance relationship, i.e. if an offspring dominates its parent, it may replace
it in the population. The replacement of population members by dominating
offspring ensures that the solution vectors move closer to the Pareto front as
the search progresses. To additionally ensure a wider spread of solutions, the
dominance condition is relaxed whenever a new global best value is discovered

64 Mumford-Valenzuela

for any of the individual components of the solution vector. In the case of the
multiple knapsack problem for example, a global best value will correspond to
a maximum profit in one of the m knapsacks. Care has to be taken, however,
to ensure that global best values for other components (e.g. maximum profits
in other knapsacks) are not lost from the population when a dominance
condition is relaxed. Ensuring elitism (i.e. that the best solutions are not lost)
at this level is straightforward if multiobjective optimization is restricted to
two components in the solution vector. Whenever an offspring produces an
improved global best for either of the components, if the global best for the
second component happens to occur in one of the parents, the offspring will
simply replace the other parent. With three or more components, however, it
is possible for global best values to occur in both parents. When this happens
SEAMO replaces another population member, chosen at random, provided
that the newly selected individual does not itself harbor a global best. If it
does, the random selection process is repeated until a suitable individual is
found.

As a final precaution, a solution vector for a dominating offspring is
compared with all the solution vectors in the current population before a
final decision is made on replacement. If the solution vector produced by the
offspring is duplicated elsewhere in the population, the offspring dies and does
not replace its parent. As previously mentioned, the deletion of duplicates
helps maintain diversity in the population and thus avoid the premature
convergence of the population to sets of identical, or very similar, individuals.
The final action of SEAMO is to save all the non-dominated solutions from
the final population to a file.

4.6 Illustrating SEAMO Using a Small Multiple
Knapsack Problem

Several approaches have been suggested for representing solutions to single
objective knapsack problems for EAs. Michalewicz [8] identifies three classes:
algorithms based on penalty functions, algorithms based on repair methods,
and algorithms based on decoders (i.e. interpreters to convert lists of symbols
in the chromosomes into solutions to the required problem). The main
challenge with the knapsack problem is to ensure that the EA does not
waste vast amounts of its time in generating illegal solutions with over-full
knapsacks.

In the present study, SEAMO uses a representation system based on a
decoder for the 0-1 MKP. (Experiments with other representations for the 0-1
MKP are documented in a later study by the present author, see [9]). For the
decoder scheme MKP solutions are represented as simple permutations of the
objects to be packed. The decoder packs the individual objects, one at a time,
starting at the beginning of the permutation list, and working through. For
each object that is packed, the decoder checks to make sure that none of the

4 A Simple Approach to Evolutionary Multiobjective Optimization 65

Figure 4.5. Packing is discontinued and the final item removed as soon as the
weight limit is exceeded for a knapsack.

weight limits is exceeded for any knapsack. Packing is discontinued as soon
as a weight limit is exceeded for a knapsack (Figure 4.5) and when this is
detected the final object that was packed is removed from all the knapsacks.
Thus, each knapsack contains exactly the same objects as required, and each
solution that is generated is a feasible solution. Using the ten object problem
with two knapsacks given previously as an example, given a permutation of
{2,5,1,7,9,8,10,3,4,6}, the decoder would first pack item 2, which weighs 8
units in knapsack 1 and 4 units in knapsack 2. Item 5 would be packed next,
weighing 3 units in knapsack 1 and 9 units in knapsack 2, giving total weights
of 11 and 13 for the two knapsacks. The decoder would carry on packing items
from the permutation list until it had packed item 10, giving total weights of
36 and 39 for knapsacks 1 and 2 respectively. A weight of 39 units in knapsack
2 exceeds the capacity of the knapsack, and so the last item to be packed,
which is item 10, is removed from both knapsacks giving final weights of 33
units for knapsack 1 and 31 units for knapsack 2. The profit vector for packing
the items 2, 5, 1, 7, 9, and 8 is {32, 24}.

Cycle crossover (CX) [10] is used as the recombination operator with
the above permutation representation, and the mutation operator swaps two
arbitrarily selected objects within a single permutation list. CX was selected as
the recombination operator because it transmits absolute positions of objects
in the permutation lists from the parents to the offspring. Neither edge-
based nor order-based operators would seem to be appropriate here, for a set
membership problem such as this. Some comparative runs shown in Figure 4.6
support the choice of CX as the recombination operator. This figure compares
the performance of four different permutation-based operators on a 750 object,

66 Mumford-Valenzuela

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Plots for 750 objects in 2 knapsacks

PMX
CX
OX
UOBX

Figure 4.6. Non-dominated solutions for different crossovers.

2 knapsack problem (see Section 4.7). The traces on Figure 4.6 are partially
matched crossover (PMX) [11], cycle crossover (CX) [10], a version [12] of
order crossover (OX) [13] that preserves absolute positions better than the
original, and uniform order based crossover (UOBX) [14]. Populations of 250
were used for the test runs, and the EA run for 15,000 generations. Clearly
the plot of SEAMO using CX gives a much more diverse set of solutions than
any of the other plots. However, the UOBX solutions, although considerably
less diverse than the CX solutions, are slightly better in quality.

4.6.1 Cycle Crossover

The CX operator ensures that each position in the resulting offspring is
occupied by a value occupying the same position in one or other of the parents.
As an example, suppose we have strings A and B below as our two parents:

A = 8 7 6 4 1 2 5 3 9 10
B = 2 5 1 7 3 8 4 6 10 9

4 A Simple Approach to Evolutionary Multiobjective Optimization 67

We now start from the left and randomly select an item from string A. Suppose
we choose item 6 from position 3, this is then copied to position 3 of the
offspring we shall call A′:

A′ = – – 6 – – – – – – –

In order to ensure that each value in the offspring occupies the same position
as it does in either one or other parent, we now look in position 3 of string B
and copy item 1 from string A to the offspring:

A′ = – – 6 – 1 – – – – –

Next we look in position 5 of string B and copy item 3 from string A:

A′ = – – 6 – 1 – – 3 – –

Looking at position 8 in string B we find item 6. This completes the cycle.
We now fill the remaining positions in A′ from string B thus:

A′ = 2 5 6 7 1 8 4 3 10 9
B′ = 8 7 1 4 3 2 5 6 9 10

The offspring B′ is obtained by performing the complementary operations.

4.7 A Summary of Results for Multiple Knapsack
Problems

The multiple knapsack problems of Zitzler and Thiele [6] were used as
the first set of test problems for SEAMO. These were a convenient
choice because of the extensive comparative studies that had already been
carried out on these problems, covering a wider range of state-of-the-
art EAs (see [6] and [15] for details). Furthermore, Zitzler and Thiele
have made their test problems and most of their key results available at:
http://www.tik.ee.ethz.ch/zitzler/testdata.html

4.7.1 Comparisons With Other Evolutionary Algorithms

In Valenzuela [1] SEAMO was compared with SPEA (the strength Pareto
evolutionary algorithm) [6], and was found to do better. However, when
SEAMO was compared with the more recent EAs covered in Zitzlet et al.
[15], PESA (the Pareto envelope-based seletion algorithm) [5], NGSA2 (a fast
elitist non-dominated sorting genetic algorithm) [16], and SPEA2 an improved
version of SPEA, it found these results more difficult to beat. Interestingly,
though, SEAMO improved its performance, relative to the other EAs as more
knapsacks (i.e. objective functions) were added. For a large problem with 750

68 Mumford-Valenzuela

objects, for example, SEAMO was easily beaten by some other EAs using
the same population sizes and running the algorithms for the same number
of generations, when only 2 knapsacks were used. SPEA2 [15] produced
particularly impressive results on this problem. When tested on a 750 object
problem with 3 knapsacks, SEAMO performed much better, relative to the
other EAs, although not quite able to match the other EAs on an evaluation
for evaluation basis. For the 750 object problems with either 2 or 3 knapsacks,
SEAMO is able to beat its competitors only if it is allowed to perform more
evaluations. Given the simplicity of the SEAMO algorithm, however, it may
be acceptable that it performs more evaluations, depending on how much
faster it runs than its competitors. On the other hand, for the problem with
750 objects and 4 knapsacks, SEAMO was easily able to outperform all its
main competitors performing the same number of evaluations.

4.7.2 The Effect of Increasing the Population Size

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4 Plots for 750 objects in 2 knapsacks

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Population = 100
Population = 500
Population = 5000

Figure 4.7. Non-dominated solutions from single runs of SEAMO showing the
effect of increasing the population size.

4 A Simple Approach to Evolutionary Multiobjective Optimization 69

In order to shed further light on the effect of increasing the number of
evaluations performed by SEAMO, a number of single runs were carried out
on a 750 object, 2 knapsack problem using various sizes of population. Figure
4.7 illustrates the results of some of these experiments. Population sizes of
100, 200, 500, 1,000, 2,000 and 5,000 were tried and the EA halted after 40
generations had elapsed in which no improvements had been made to the
population.

Clearly, increasing the population size produces better results, consisting
of a larger quantity of non-dominated solutions which are closer to the Pareto
front. However, the improvements are fairly small between population sizes
of 500 and 5,000. Surprisingly, perhaps, the SEAMO run with a population
of 100 appears to produce a wider spread of results than the runs with the
larger populations. Some key features of all the runs are presented in Table
4.3.

Table 4.3. The effect on SEAMO of increasing population size.

Population Total Run time Number of non- Largest Largest
size evaluations (secs) dominated solutions profit 1 profit 2

100 950,900 154 56 29,589 29,585
200 2,605,000 442 79 29,543 29,555
500 4,154,000 777 103 29,134 29,192

1,000 13,956,000 2,705 176 29,255 29,318
2,000 32,118,000 6,356 237 29,334 29,069
5,000 151,250,000 30,603 260 29,141 29,504

Columns two and three of Table 4.3 give the total number of evaluations
and the run time, respectively. Column four gives the number of non-
dominated solutions present in the population at the end of each run. The size
of this non-dominated set clearly gets larger as the population is increased.
Columns five and six give the smallest and largest profits found in the final
non-dominated set for each knapsack. As previously suggested, the range of
values would appear to decrease slightly as the population size is increased.
A possible explanation for this could be that smaller populations are more
focussed towards widening the spread of solutions than larger populations,
because the dominance condition for parental replacement is likely to be
relaxed, a higher proportion of the time, in order to incorporate new global
best-so-far objective values.

4.7.3 Investigation of SEAMO’s Parental Replacement Strategy

Progress in SEAMO is due entirely to its replacement strategy. Recall from
Section 4.5 that an offspring will replace one or other of its parents if it
is deemed to be superior to that parent. Most replacements occur when

70 Mumford-Valenzuela

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Plots for 750 objects in 2 knapsacks

Dominance and global best
Dominance only
Global best only

Figure 4.8. Results showing the effect of using one or other or both replacement
criteria.

an offspring dominates one of its parents. However, in situations where a
new global best value is discovered for one of the positions in the solution
vector, the dominance condition is relaxed, to encourage a wider spread of
approximate Pareto solutions within the population. This section investigates
the contribution of each component in the replacement strategy with some
experimental runs. In the first run, both replacement components are present.
In the second run, parents are replaced only by dominating offspring and not
when new global best values are discovered (unless the offspring solution with
the new global best also dominates a parental solution). The third run shows
the effect of replacing parents only when new global best values are discovered.

The 750 object, 2 knapsack problem is used for the experiments, and the
population size set to 500. All three tests are run for 13,504 generations.
The results are plotted in Figure 4.8. Clearly, using both the replacement
strategies together produces the best results by far. Replacing parents only
by dominating offspring appears to produce high quality solutions, but within
a very limited range. Replacing parents only with offspring that improve a

4 A Simple Approach to Evolutionary Multiobjective Optimization 71

global best value at any position in the solution vector, produces very poor
solutions, and very few of them.

4.8 Implementing SEAMO to Solve Continuous Test
Problems

Figure 4.9. Continuous multiobjective functions.

Having completed some preliminary work testing SEAMO on multiple
knapsack problems, SEAMO was tried on some continuous test functions,
published in Zitzler et al. [15]. The permutation representation and decoder
used for the knapsack problems is not suitable for continuous functions, so a
different scheme had to be devised.

The continuous functions and their parameters are summarized in Table
4.4. Each of the test problems in Table 4.4 is a minimization problem
consisting of two objectives and 100 variables. For SPH-2 and KUR large
domains ([−103, 103]) were selected from Zitzler et al. [15] in order to test the
algorithms’ ability to locate the Pareto-optimal set in a large objective space.

The function SPH-m is a multiobjective generalization of the Sphere
Model, a symmetric unimodal function where the isosurfaces are given by
hyperspheres. Only the two objective instance (SPH-2) is covered in the
present paper, although Zitzler et al. [15] also included the three objective
instance in their experiments.

72 Mumford-Valenzuela

Table 4.4. Continuous test problems used in this study. The objective functions are
given by fj , 1 ≤ j ≤ m, where m denotes the number of objectives and n the number
of variables. The type of the objectives is given in the first column (minimization or
maximization).

n Domain Objective functions
Type

SPH-m (Schaffer 1985 [17]; Laumanns, Rudolph and Schwefel 2001 [18])

100 [−103, 103]n fj(x) =
∑

1≤i≤n,i�=j (xi)2 + (xj − 1)2

min 1 ≤ j ≤ m, m = 2

ZDT6 (Zitzler, Deb and Thiele 2000 [19])

100 [0, 1]n f1(x) = 1 − exp(−4x1)sin6(6πx1)
min f2(x) = g(x)[1 − (f1(x)/g(x))2]

g(x) = 1 + 9.((
∑n

i=2 xi/(n − 1)))0.25

QV (Quagliarella and Vicini 1997 [20])

100 [−5, 5]n f1(x) = (1/n
∑n

i=1(x
2
i − 10 cos(2πxi) + 10))1/4

min
f2(x) = (1/n

∑n
i=1((xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10))1/4

KUR (Kursawe 1991 [21])

100 [−103, 103]n f1(x) =
∑n

i=1(|xi|0.8 + 5. sin3(xi) + 3.5828)

min
f2(x) =

∑n−1
i=1 (1 − exp−0.2

√
x2

i +x2
i+1)

ZDT6 is also unimodal and has a non-uniformly distributed objective
space, both orthogonal and lateral to the Pareto-optimal front. ZDT6 was
proposed in Zitzler et al. [15] to test the ability of the various algorithms to
find a good distribution of points even in this very difficult case.

The components of the function QV are two multi-modal functions, where
the main difficulty, apart from the multi-modality, is the extreme concave
Pareto-optimal front together with a diminishing density of solutions towards
the extreme points.

Kursawe’s function (KUR) finally has a multi-modal function in one
component and pair-wise interactions among the variables in the other
component. The Pareto-optimal front is not connected and has an isolated
point as well as concave and convex regions.

For all of the continuous functions the solutions were coded as real
vectors, of length 100, for SEAMO and uniform crossover [22] selected as
the recombination operator. Uniform crossover was chosen because the lack
of any particular relationship between adjacent variables on the chromosome
would seem to reduce any potential advantage that could be obtained by the
building blocks created using one or two point crossover (although experiments
I carried out later indicate that, in fact, one point crossover produces better
results on these continuous functions). For the mutation operator a simple

4 A Simple Approach to Evolutionary Multiobjective Optimization 73

uniform mutation operator was tried initially, but this was found to be
much too disruptive, particularly when large objective spaces were used. For
ZDT6 and KUR, for example, individual mutated variables could take any
value in the range [−103, 103], and this made convergence of the EA very
difficult. To overcome this problem, which is commonplace with real valued
representations, a non-uniform mutation based on that described on page
111 of Michalewicz [8] was chosen. The idea of non-uniform mutation is to
gradually reduce the magnitude of any change that the operator is allowed
to make to the values of the variables as the EA progresses. Non-uniform
mutation causes the operator to search the space uniformly initially and very
locally at later stages. The non-uniform mutation is defined as follows: if
st

v = 〈v1, . . . , vm〉 is a chromosome in the population at time t, and the element
vk is selected for this mutation (domain of vk is [lk, uk]), the result is a vector
st+1

v = 〈v1, . . . , v
′
k, . . . , vm〉, with k ∈ {1, . . . , n}, and

v′
k =

{
vk + ∆(t, uk − vk) if a random digit is 0,
vk − ∆(t, vk − lk) if a random digit is 1,

where the function ∆(t, y) returns a value in the range [0, y] such that the
probability of ∆(t, y) being close to 0 increases as t increases. The following
function has been used in the present study:

∆(t, y) = y.(1 − rf(t))

where r is a random number from [0 . . . 1], t is the number of generations that
have elapsed so far. f(t) = kt is used for these experiments, where k is a
constant factor set to 0.999.

An important feature of the SEAMO algorithm is the deletion of
duplicates, designed to help maintain diversity and prevent premature
convergence. For the knapsack problem, and other combinatorial problems,
where the objective functions can take on only a limited number of discrete
values, phenotypic duplicates are easily identified as individuals with identical
solution vectors. With continuous functions, however, it is sensible to identify
duplicates in a rather more flexible manner, because exact duplicates are likely
to be rare. To this end, values for component objective functions xi and x′

i

are deemed to be equal if and only if xi − ε ≤ x′
i ≤ xi + ε, where ε is an error

term, which was set at 0.00001 × xi for the purpose of these experiments.

4.9 Summary of Results for the Continuous Functions

Figures 4.10, 4.11, 4.12 and 4.13 compare the 2D graphical traces of
SEAMO with various state-of-the-art EAs on the four continuous problems,
respectively SPH-2, ZDT6, QV and KUR. SEAMO’s competitors in the 2D
plots are PESA, NGSA2, and SPEA2. Population sizes of 100 were used in
each case and the algorithms run for 10,000 generations. Each trace is a plot of
the non-dominated solutions extracted from the results of 30 replicated runs.

74 Mumford-Valenzuela

Note that all the function optimization problems used in this study are
minimization problems, unlike the multiple knapsack problem. Thus the
algorithms producing the lowest traces on these graphs perform best for the
continuous functions.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
1,000,000 evaluations for SPH−2

f1(x)

f2
(x

)

PESA
NSGA2
SPEA2
SEAMO

Figure 4.10. Non-dominated solutions from 30 runs of PESA, NSGA2, SPEA2 and
SEAMO on SPH-2.

The 2D graphical representations indicate that SEAMO performs very
well in comparison with its competitors for three out of four of the continuous
functions, i.e. SPH-2, QV and KUR. Table 4.5 compares the evolutionary
algorithms in pairs using values for the C metric defined in Zitzler and Thiele
[6]. The C metric measures the coverage of two sets of solution vectors. Let
X ′, X ′′ ⊆ X be two sets of solutions vectors. The function C maps the ordered
pair (X ′, X ′′) to the interval [0, 1]

C(X ′, X ′′) =
| {a′′ ∈ X ′′; ∃ a′ ∈ X ′ : a′ � a′′} |

| X ′′ | (4.1)

The value C(X ′, X ′′) = 1 means that all the points in X ′′ are dominated
by or equal to points in X ′, (i.e. all the points in X ′′ are weakly dominated by

4 A Simple Approach to Evolutionary Multiobjective Optimization 75

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1,000,000 evaluations for ZDT6

f1(x)

f2
(x

)

SPEA2
SEAMO

Figure 4.11. Non-dominated solutions from 30 runs of SPEA2 and SEAMO on
ZDT6.

points in X ′). The opposite, C(X ′, X ′′) = 0, represents the situation when
none of the points in X ′′ is weakly dominated by X ′. Note that both C(X ′, X ′′)
and C(X ′′, X ′) have to be considered, since C(X ′, X ′′) is not necessarily equal
to 1 − C(X ′′, X ′) (i.e. when many solutions in X ′ and X ′′ neither dominate nor
are they dominated by solutions in the alternative set). The C metric values
used in the table indicate superior coverage of the search space by SEAMO
for SPH-2, QV and KUR. Single runs of SEAMO on the continuous functions
took between 81 secs for SPH-2, and 412 secs for KUR, using a Pentium III
processor and 128 MB of memory.

4.10 Conclusions

This chapter describes SEAMO, a simple evolutionary algorithm for
multiobjective optimization. SEAMO avoids most of the time consuming
global calculations typical of other multiobjective evolutionary techniques,
using a simple uniform selection strategy within a steady-state evolutionary
algorithm (EA) and a straightforward elitist mechanism for replacing

76 Mumford-Valenzuela

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.8

1

1.2

1.4

1.6

1.8

2

2.2
1,000,000 evaluations for QV

f1(x)

f2
(x

)

PESA
NSGA2
SPEA2
SEAMO

Figure 4.12. Non-dominated solutions from 30 runs of PESA, NSGA2, SPEA2 and
SEAMO on QV.

Table 4.5. C metrics to compare SEAMO with PESA, NSGA2, and SPEA2. The
non-dominated solutions are collected from 30 results files for each algorithm, as
before. A population size of 100 is used and a total of 1,000,000 evaluations is
carried out for each run of each algorithm.

C(alg1,alg2) SPH-2 ZDT6 QV KUR

C(SEAMO, PESA) 99.00 00.00 94.30 54.90
C(PESA, SEAMO) 00.00 93.30 0.03 04.90
C(SEAMO, NSGA2) 99.00 00.00 63.00 66.30
C(NSGA2, SEAMO) 0.00 93.30 00.60 02.00
C(SEAMO, SPEA2) 99.00 00.00 58.20 70.40
C(SPEA2, SEAMO) 0.00 93.30 00.60 02.10

4 A Simple Approach to Evolutionary Multiobjective Optimization 77

50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35
1,000,000 evaluations for KUR

f1(x)

f2
(x

)

PESA
NSGA2
SPEA2
SEAMO

Figure 4.13. Non-dominated solutions from 30 runs of PESA, NSGA2, SPEA2 and
SEAMO on KUR.

population members with their offspring. Throughout the genetic search,
SEAMO’s progress depends entirely on the replacement policy, and no
global fitness calculations, rankings, sub-populations, niches or auxiliary
populations are required. SEAMO has produced some promising results for
the multiple knapsack problem, particularly where three or more objectives
(knapsacks) are involved. Results are also competitive for several continuous
benchmarks, and SEAMO outperforms state-of-the-art Pareto-based EAs
compared in Zitzler et al. [15] in many cases. In addition to fast execution,
the simplicity of the new algorithm makes it relatively quick and easy to
implement, reducing the development time needed for prototyping and testing
new multiobjective applications. If required, more sophisticated Pareto-based
evolutionary techniques can be incorporated following an initial proof-of-
concept. The main weakness identified is SEAMO’s current inability to ensure
an even spread of Pareto solutions when tackling problems such as ZDT6,
where highly non-uniformly distributed objective spaces are involved. Work
is currently in progress to address this weakness and generally improve the
performance of SEAMO. It remains a challenge to implement improvements
without forfeiting the essential simplicity of the SEAMO approach, however.

78 Mumford-Valenzuela

Additionally, new and better multiple objective techniques are emerging
all the time, providing an increasingly difficult challenge for SEAMO. For
example, the multiple objective genetic local search of Jaskiewicz [23] has
produced some excellent results on the multiple knapsack problem.

This
chapter describes the new approach in detail, covering implementations for
a combinatorial problem (the 0-1 multiple knapsack problem) and for several
continuous functions, and including full details of representations and genetic
operators.

Acknowledgments

I should like to thank my husband, Mark Mumford, for the cartoon
illustrations.

References

1. Valenzuela, CL, A Simple Evolutionary Algorithm for Multi-objective
Optimization (SEAMO), Congress on Evolutionary Computation (CEC),
Honolulu, Hawaii, 12-17th May 2002, pp. 717-722, 2002.

2. Goldberg, DE, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley,USA, 1989.

3. Fonseca, CM and Fleming, PJ, Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization, Proceedings of the
Fifth International Conference on Genetic Algorithms, pp. 416-423, Morgan
Kaufmann, 1993.

4. Horn, J, Nafpliotis, N and Goldberg, DE, A Niched Pareto Genetic Algorithm
for Multiobjective Optimization, Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, Volume 1, pp. 82-87, IEEE Press, 1994.

5. Corne, DW, Knowles, JD and Oates, MJ, The Pareto Envelope-based Selection
Algorithm for Multiobjective Optimization. Parallel Problem Solving from
Nature - PPSN VI, Lecture Notes in Computer Science 1917, pp. 839-848,
Springer, 2000.

6. Zitzler, E and Thiele, L, Multiobjective evolutionary algorithms: A
Comparative Case Study and the Strength Pareto Approach, IEEE
Transactions on Evolutionary Computation, 1999; 3(4)1999: 257-271.

7. Cavicchio, DJ, Adaptive Search Using Simulated Evolution, PhD dissertation,
University of Michigan, Ann Arbor, 1970.

8. Michalewicz, Z, Genetic Algorithms + Data Structures = Evolutionary
Programs, Third, revised and extended edition, Springer,Berlin, 1996.

9. Mumford, CL (Valenzuela), Comparing Representations and Recombination
Operators for the Multi-objective 0/1 Knapsack Problem, Congress on
Evolutionary Computation (CEC), Canberra, Australia, 2003, pp. 854-861,
2003.

4 A Simple Approach to Evolutionary Multiobjective Optimization 79

10. Oliver, IM, Smith, DJ and Holland JRC, A Study of Permutation Crossover
Operators on the Traveling Salesman Problem, Genetic Algorithms and their
Applications:Proceedings of the Second International Conference on Genetic
Algorithms, pp. 224-230, 1987.

11. Goldberg, DE and Lingle R, Alleles, Loci and the TSP, Proceedings of an
International Conference on Genetic Algorithms and Their Applications, pp.
154-159, Pittsburgh, PA, 1985.

12. Mühlenbein, H, Gorges-Schleuter, M and Krämer O, Evolution Algorithms in
Combinatorial Optimization, Parallel Computing, 1988, 7:65-85.

13. Davis, L, Applying Adaptive Algorithms to Epistatic Domains, Proceedings of
the Joint International Conference on Artificial Intelligence, pp. 162–164, 1985.

14. Davis, L, Order-based Genetic Algorithms and the Graph Coloring problem,
Handbook of Genetic Algorithms pp. 72-90, New York, Van Nostrand Reinhold,
1991.

15. Zitzler, E, Laumanns, M and Thiele, L, SPEA2: Improving the Strength
Pareto Evolutionary Algorithm, TIK-Report 103, Department of Electrical
Engineering, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland,2001 {zitzler, laumanns, thiele}@tik.ee.ethz.ch.

16. Deb, K, Agrawal, S, Pratap, A and Meyarivan, T A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Mult-objective Optimization: NSGA-II, Parallel
Problem Solving from Nature - PPSN VI, Lecture Notes in Computer Science
1917, pp. 849-858, Springer, 2000.

17. Schaffer, JD Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms, Proceedings of an International Conference on Genetic Algorithms
and Their Applications, pp. 93-100, Pittsburgh, PA, 1985.

18. Laumanns, M, Rudolph, G and Schwefel, HP Mutation Control and
Convergence in Evolutionary Multiobjective Optimization. Proceedings of the
7th International Mendel Conference on soft Computing (MENDEL 2001),
Brno, Czech Republic, 2001.

19. Zitzler, E, Deb, K and Thiel, L Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation, 2000; 8(2):173-195.

20. Quagliarella, D and Vicini, A Coupling Genetic Algorithms and Gradient Based
Optimization Techniques. In D. Quagliarella, J. Périaux, C Poloni, and G.
Winter (eds) Genetic Algorithms and Evolution Strategy in Engineering and
Computer Science – Recent Advances and Industrial Applications, pp. 289–309,
Chichester, Wiley, 1997.

21. Kursawe, F A Variant of Evolution Strategies for Vector Optimization. In H. -P.
Schewefel and R. Männer (eds), Parallel Problem Solving from Nature Berlin,
pp. 193-197, Springer, 1991.

22. Syswereda, G Uniform Crossover in Genetic Algorithms, Genetic Algorithms
and their Applications:Proceedings of the Third International Conference on
Genetic Algorithms, pp. 2-9, 1989.

23. Jaskiewicz, A On the Performance of Multiple Objective Genetic Local Search
on the 0/1 Knapsack Problem - A Comparative Experiment, IEEE Transactions
on Evolutionary Computation, 2002, 6(4):402-412.

24. Hajela, P, and Lin, CY Genetic Search Strategies in Multicriterion Optimal
Design, Structural Optimization, Volume 4, pp. 99-107, New York: Springer,
1992.

5

Quad-trees: A Data Structure for Storing
Pareto Sets in Multiobjective Evolutionary
Algorithms with Elitism

Sanaz Mostaghim and Jürgen Teich

Summary. In multiobjective evolutionary algorithms (MOEAs) with elitism, the
data structures for storing and updating archives may have a great impact on the
required computational (CPU) time, especially when optimizing higher-dimensional
problems with large Pareto sets. In this chapter, we introduce Quad-trees as an
alternative data structure to linear lists for storing Pareto sets. In particular, we
investigate several variants of Quad-trees and compare them with conventional linear
lists. We also study the influence of population size and number of objectives on the
required CPU time. These data structures are evaluated and compared on several
multiobjective example problems. The results presented show that typically, linear
lists perform better for small population sizes and higher-dimensional Pareto fronts
(large archives) whereas Quad-trees perform better for larger population sizes and
Pareto sets of small cardinality.

5.1 Introduction

Multiobjective optimization (MO) has been investigated frequently during
the last years [1], and it is proved that stochastic search methods such as
evolutionary algorithms (EA) often provide the best solutions for complex
optimization problems [2]. Up to now there exist several MOEAs, which
can be divided into two groups. The first group contains the MOEAs that
always keep the best solutions (non-dominated solutions) of each generation
in an archive, and they are called MOEAs with elitism. In the second group,
there is no archive for keeping best solutions and MOEA may lose them
during generations. MOEAs with elitism are studied in several methods like
Rudolph’s Elitist MOEA, Elitist NSGA-II, SPEA, PAES (see [1] for all) and
SPEA2 [3]. Indeed, by using elitism, a good solution will never be lost unless
a better solution is discovered. It is proved that MOEAs converge to optimal
solutions of some functions in the presence of elitism [4, 5]. Applying the
non-dominated solutions in the archive in the selection process, enhances the
probability of creating better offsprings, too. Therefore, the archive is playing
an important role in MOEAs.

82 Mostaghim and Teich

In this chapter, we investigate and compare different data structures for
implementing archives such to minimize the CPU time. The motivation of
our work comes from the Quad-tree data structure proposed by Finkel and
Bentley in 1974 [6]. Later, Habenicht [7] adapted Quad-trees to the problem
of identifying non-dominated criterion vectors. Finally, Sun and Steuer [8]
improved the work of [7] to make the storage more efficient. However, no one
so far has investigated Quad-tree data structures in the context of evolutionary
algorithms, i.e., MOEAs. For example, the work of Sun and Steuer [8] only
considered inserting a randomly generated sequence of test vectors into an
empty archive and did not consider the performance of iteratively updated
archives like in elitist MOEAs. We will see that a fair comparison of data
structures is only possible in case different data structures are tested on (a)
equal test problems, and using (b) equal optimization algorithms, e.g., the
same MOEA. Up to now, linear lists have been used as the archives for
storing non-dominated solutions in MOEAs [1]. Here, we apply the Quad-
tree structure from Sun and Steuer [8] to MOEAs (especially SPEA [9]) after
treating it for a shortcoming which it had in dealing with some special cases.

In our work, three kinds of Quad-trees are examined which are called
Quad-tree1, Quad-tree2 and Quad-tree3. The first data structure called Quad-
tree1 is derived from Habenicht [7]. It has two disadvantages: The CPU time
depends on the order in which the vectors are added, and deleting a vector
means deleting all the subtree and reinserting all vectors again from the root.
Therefore, we propose Quad-tree2 as an improved data structure that uses
flags to indicate dominated vectors that have to be deleted in the Quad-tree.
The third data structure is the implementation of Sun and Steuer’s Quad-tree
[8]. We have extended this data structure to make it more efficient for MOEA
archives, calling it Quad-tree3 in the following.

In this chapter, a comparative study of linear lists with the new Quad-
trees data structures is given, i.e., the CPU times are compared for each data
structure. We study the influence of population size, archive size and number
of objectives on the CPU time for different kinds of test problems. These
tests, taken from Zitzler and Thiele [9] and Deb et al. [10], contain 2- to 10-
objective test problems. We will see that both linear lists and Quad-trees may
be attractive data structures depending on the following three main problem
characteristics: (a) dimension m of the objective space, (b) population size,
and (c) archive size. As a rule of thumb the presented results indicate that the
Quad-tree data structures turn out to be superior for large population sizes
and problems with archives of small cardinality.

This chapter consists of five sections. After this introduction, we provide
the basic notations and definitions concerning multiobjective optimization.
Then the basic structure of MOEAs is studied in Section 5.2. In Section 5.3,
different data structures for storing Pareto-points in archives, i.e., linear lists
and Quad-trees are proposed. Section 5.4 explains how these data structures
are embedded into a MOEA that is used in Section 5.5 where results of

5 Quad-trees 83

experiments are presented using a number of different test functions to
evaluate and compare the performance of the different data structures.

5.1.1 Multiobjective Optimization

A multiobjective optimization problem has a number of objective functions
which are to be minimized or maximized at the same time. In the following,
we state the multiobjective optimization problem in its general form:

minimize y = f(x) = (f1(x), f2(x), · · · , fm(x))
subject to e(x) = (e1(x), e2(x), ·, ek(x)) ≤ 0

x ∈ S (5.1)

involving m(≥ 2) conflicting objective functions fi : �n → � that we want to
minimize simultaneously. The decision vectors x = (x1, x2, · · · , xn)T belong
to the feasible region S ⊂ �n. The feasible region is formed by constraint
functions e(x). We denote the image of the feasible region by Z ⊂ �m and call
it a feasible objective region. The elements of Z are called objective vectors and
they consist of objective (function) values f(x) = (f1(x), f2(x), · · · , fm(x)).

A decision vector x1 ∈ S is said to dominate a decision vector x2 ∈ S if
both of the following conditions are true:

1. The decision vector x1 is not worse than x2 in all objectives, i.e.,
fi(x1) ≤ fi(x2) for all i = 1, · · · , m.

2. The decision vector x1 is strictly better than x2 in at least one objective,
i.e., fi(x1) < fi(x2) for at least one i = 1, · · · , m.

A decision vector x1 ∈ S is called Pareto-optimal if there does not exist
another x2 ∈ S that dominates it. Finally, an objective vector is called Pareto-
optimal if the corresponding decision vector is Pareto-optimal.

5.2 Multiobjective Evolutionary Algorithms (MOEAs)

Evolutionary algorithms (EAs) are iterative stochastic search methods that
are based on the two concepts of generate and evaluate [2]. Multiobjective
evolutionary algorithms (MOEAs) with elitism are also based on this idea.
Figure 5.1 shows the typical structure of a MOEA with elitism, where t
denotes the number of the generation, Pt the population, and At the archive
at generation t. The aim of function Generate is to generate new solutions in
each iteration t which is done through selection, recombination and mutation.
The function Evaluate calculates the fitness value of each individual in the
actual population Pt. Fitness assignment in MOEA is done in different ways,
such as by Pareto ranking [12], non-dominated sorting [11], or by calculating
Pareto strengths [9]. Since only the superior solutions must be kept in the
archive, it must be updated after each generation. The function Update

84 Mostaghim and Teich

BEGIN
Step 1: t = 0;
Step 2: Generate the initial population P0 and initial archive A0

Step 3: Evaluate Pt

Step 4: At+1 := Update(Pt, At)
Step 5: Pt+1 := Generate(Pt, At)
Step 6: t = t + 1
Step 7: Unless a termination criterion is met, goto Step 3

END

Figure 5.1. Typical structure of an archive-based MOEA.

compares whether members of the current population Pt are non-dominated
with respect to the members of the actual archive At and how and which of
such candidates should be considered for insertion into the archive and which
should be removed. Thereby, an archive is called domination-free if no two
solutions in the archive dominate each other. Obviously, during execution of
the function Update, dominated solutions must be deleted in order to keep
the archive domination-free.

These three phases of an elitist MOEA are iteratively repeated until a
termination criterion is met, such as a maximum number of generations or
when there has been no change in non-dominated solutions found for a given
number of generations. The output of an elitist MOEA is the set of non-
dominated solutions stored in the final archive. This set is an approximation
of the Pareto set and often called quality set.

The above algorithm structure is common to most elitist MOEAs. For
example, in SPEA [9], newly found non-dominated solutions of the population
are compared with the actual archive and the resulting non-dominated
solutions are preserved in the updated archive.

5.3 Data Structures for Storing Non-dominated
Solutions in MOEA

In this section, we propose linear lists and Quad-tree data structures as
introduced first by Habenicht [7] and later by Sun and Steuer [8] for the
implementation of an archive.

In the following, we assume that at any generation t, the archive At must
always be kept domination-free. Also, we assume throughout this chapter that
the archive size |At| is not a fixed constant, but may grow or decrease at each
generation t.

5 Quad-trees 85

5.3.1 Linear Lists

A linear list is the most straightforward way to implement an archive. In
order to keep an archive domination-free, the following basic operation must
be performed, namely Insertion with Update of complexity O(m · |A| · |P |): In
the worst case, each candidate x of a population P has to be tested against
each member of the archive A for inclusion. In case x is not dominated by
any member of A, we assume it is inserted (e.g., at the end), else rejected. On
the other hand, if x dominates members of A, these members must be deleted
from the archive. Hence, the overall run-time complexity of maintaining a
domination-free linear list is O(m · |A| · |P |).

In an MOEA such as SPEA [9], non-dominated solutions (objective
vectors) are stored in an array. In this archive, if a candidate x is not
dominated with respect to other members of P and if it also doesn’t dominate
any vector in the archive A, it is added to the end of the array. On the other
hand, if the new vector x is dominated by another vector y ∈ A, then x is
rejected. If x dominates y, then y is deleted.

5.3.2 Quad-trees

A Quad-tree [7] is a tree-based data structure for storing objective vectors.
Each node is a vector with m elements and can have at most 2m sons which are
defined by a successorship. A Quad-tree is a domination-free data structure.
In order to explain the data structure, some definitions are necessary. Let x
and y denote m-dimensional objective vectors.
k-Successor: A node x is called k-successor of node y where k is a binary
string of the form k = (k1, · · · , km)2 and

ki =
{

1 if xi ≥ yi

0 if xi < yi
(5.2)

k can also be considered as a scalar value as in [7, 8]:

k =
m∑

i=1

ki2m−i

k-Son: Node x is k -son of node y, if x is a k -successor of y and also the
direct son of y.
k-Set: Si(k) is a set of i in k-successors (i is 0 or 1):

S0(k) = {i|ki = 0, k = (k1, k2, . . . , km)2} (5.3)
S1(k) = {i|ki = 1, k = (k1, k2, . . . , km)2} (5.4)

As a Quad-tree is a domination-free data structure, there exist no branches
with the successorship 0 and 2m because nodes with k equal to 0 will by
definition dominate the root and the nodes with k equal to 2m will always be
dominated by the root.

86 Mostaghim and Teich

Example 1:

Figure 5.2 shows an example of a tree for storing non-dominated, m = 3
dimensional objective vectors. Each node of this tree has m = 3 elements, so
each node can have at most 8 sons. The shown tree is not domination-free
and, hence, not a Quad-tree because the root (10 10 10) has a (000)-son and
a (111)-son. The (000)-son of the root (5 5 5), dominates the root and the
(111)-son of the root (12 15 18), is dominated by the root.

�

10
10
10

14
18
6

45

32
2

40
4
5

16
22

6
25
2

4

23

5
5

000 001 010 011 100 101 110 111

5
5
5

12
15
18

Figure 5.2. Example of a tree-structure for storing non-dominated solutions. Node
(5 5 5) dominates the root (10 10 10) and node (12 15 18) is dominated by the root.

When processing a vector for possible inclusion into a domination-free
Quad-tree, the vector is either discarded as being dominated by a node already
in the Quad-tree or it is inserted into the Quad-tree. However, when a vector
is inserted, it may dominate other nodes in the Quad-tree. Then, these nodes
must be deleted, too. By deleting a node, we obviously destroy the structure
of the subtree rooted at the deleted node. This means that all the successors
of the deleted node must be considered again for inclusion in the Quad-tree.
The corresponding algorithm is shown in Figure 5.3.

The way in which vectors are processed for possible inclusion in the Quad-
tree in order to maintain it domination-free is very important to identify all
non-dominated vectors. Suppose that we are processing x ∈ �3 for possible
inclusion into a domination-free Quad-tree rooted at y ∈ �3 and such that x
is a k-successor of y. With the definitions of S0(k) and S1(k), observe that:

1. The only places in the Quad-tree where there may be vectors that
dominate x are in those subtrees whose roots are sons of y that have
zeros in at least all locations that k does. That is the subtree rooted at
l-sons of y for which l < k and S0(k) ⊂ S0(l). For example, in the case
that k = (110), only the l = (010)- and (100)-successors of y must be
checked whether they dominate x or not.

2. The only places in the Quad-tree where there may be vectors that are
dominated by x are in those subtrees whose roots are sons of y that have

5 Quad-trees 87

Algorithm Quad-tree1
BEGIN

Input: x to be inserted into a Quad-tree rooted at y
Output: Updated (domination-free) Quad-tree

Step 1: Let y be the root of the tree
Step 2: Calculate k such that x is the k-successor of y

If k = 2m or if xi = yi, ∀i ∈ S0(k), STOP /* x is dominated by y */
If k = 0, delete y and its subtree, /* y is dominated by x */

replace y by x and reinsert the subtree of y from x, STOP
Step 3: For all z such that z is a l-son of y, l < k and S0(k) ⊂ S0(l):

TEST1(x,z): /* Check if x is dominated by z or a son of z */
{
Calculate k such that x is the k-successor of z
If xi = zi, ∀i ∈ S0(k), STOP
For all v such that v is a l-son of z and S0(k) ⊂ S0(l):
execute TEST1(x,v)
}

Step 4: For all z such that z is a l-son of y, k < l and S1(k) ⊂ S1(l):
TEST2(x,z): /* Check if x dominates z or a son of z */

{
Calculate k such that x is the k-successor of z
If k = 0,

delete z and reinsert all its subtrees from the global root
For all v such that v is a l-son of z and S1(k) ⊂ S1(l):
execute TEST2(x,v)
}

Step 5: If a k-son of y already exists, replace y by the k-son, goto Step 2
else x is the k-son of y, STOP

END

Figure 5.3. Quad-tree1 method.

ones in at least all locations that k does. That is the subtree rooted at
l-sons of y for which l > k and S1(k) ⊂ S1(l). For example, in the case
that k = (100), only the l = (101)- and (110)-successors of y must be
checked whether they are dominated by x or not.

An objective vector is admitted to a Quad-tree if and only if it is not
dominated by any of the vectors already in the Quad-tree. Moreover, when
admitted to the Quad-tree, all objective vectors in the Quad-tree dominated
by the new entry must be identified and deleted.

88 Mostaghim and Teich

Example 2:

Figure 5.4 shows a Quad-tree in which we want to insert the vector (4 8
12). According to the Quad-tree algorithm, the k-successorship of (4 8 12) to
(10 10 10) is calculated in Step 2 as k = (001). In the next step (Step 4),
we must look in the (011)- and (101)-successors of (10 10 10) for nodes that
are dominated by (4 8 12). The node (6 16 22) is dominated by (4 8 12) and
must be deleted. After deleting (6 16 22), we have to reinsert all the nodes
in the subtree of (6 16 22), again from the root (10 10 10). Here, (3 25 16)
is reinserted as the (011)-successor of (10 10 10), see Figure 5.5. Then, we
approach to insert (4 8 12) as a (001)-son of (10 10 10). Since (10 10 10) has
already a (001)-son, (5 5 23), we consider (5 5 23) as the new root in the
algorithm (Step 5) and we try to insert (4 8 12) in its subtree. (4 8 12) is the
(010)-successor of (5 5 23), so the (011)- and (110)-successors of (5 5 23) must
be checked whether they are dominated by (4 8 12) or not. (9 8 18) is indeed
dominated by (4 8 12), so we delete it, and since (5 5 23) has no other sons,
we insert (4 8 12) as the (010)-successor of it. Figure 5.5 shows the Quad-tree
after insertion.

�

10
10
10

23

5
5 16

22

6 14
18
6

11

9
158

9

18

8
4

12

25
3

16

40

7

110

101001010

011001

110

16

Figure 5.4. Domination-free Quad-tree from Example 2.

According to the above algorithm, the data structure Quad-tree1 has two
disadvantages: The form and depth of the Quad-tree is dependent on the order
of insertion of a given set of vectors. The second disadvantage is that deleting
a node destroys the structure of the Quad-tree and requires to reinsert all of
the nodes of subtrees of a deleted node. Therefore, deletions combined with
reinsertions will be critical and one should carefully avoid having to reinsert

5 Quad-trees 89

10
10
10

23

5
5

14
18
6

11

9
15

25
3

16

8
12

4 40

7

110

101001010

011001

16

Figure 5.5. Domination-free Quad-tree from Example 2 after inserting the vector
(4 8 12).

a vector multiple times. Therefore, we propose the following variant called
Quad-tree2 in which the deletion process is improved.

In Quad-tree2, a discovered dominated node is not deleted immediately,
but it is marked as deleted by a flag. Then, its subtrees are traversed, again
setting flags for all encountered dominated nodes instead of reinserting all
subtrees immediately. After finishing this recursive descent, we reinsert only
those nodes in subtrees that are not marked deleted. The algorithm called
Quad-tree2 is shown in Figure 5.6 and Example 3 illustrates it.

Example 3:

Consider Figure 5.5 and let us tentatively insert the new vector (12 15 5).
(12 15 5) is the (110)-successor of the root (10 10 10). Since (10 10 10) has
already a (110)-son, (14 18 6), we consider (14 18 6) as the new root in the
algorithm (Step 5) and try to insert (12 15 5) in its subtree. (12 15 5) is
the (000)-successor of (14 18 6). It means that (14 18 6) must be deleted.
Contrary to algorithm Quad-tree1, we do not delete it and reinsert all nodes
of corresponding subtrees immediately. Instead, we only mark it as deleted.
Then we look for other dominated nodes in its subtrees. (40 16 7) is also
dominated by (12 15 5) and must be deleted. Therefore, we also mark it as
deleted. Then, we replace (14 18 6) by (12 15 5). Before finishing Step 2,
we clean the subtrees from the marked nodes and reinsert only those nodes
that remain un-flagged ,i.e., node (11 15 9). Figures 5.7 and 5.8 show the
corresponding Quad-tree2 before and after inserting the vector (12 15 5).

�

90 Mostaghim and Teich

Algorithm Quad-tree2
BEGIN

Input: x to be inserted into a Quad-tree rooted at y
Output: Updated (domination-free) Quad-tree

Step 1: Let y be the root of the tree
Step 2: Calculate k such that x is the k-successor of y

If k = 2m or if xi = yi, ∀i ∈ S0(k), STOP /* x is dominated by y */
If k = 0: { /* y is dominated by x */

Flag = 0
MARK(x, y):{

For all sons z of y:
If z is a 0-son of x, mark z as deleted, Flag = 1
else if Flag = 1, mark z as reinserted
MARK(x, z) }

Replace y by x. Delete all the marked nodes in the subtree of x
Reinsert the nodes with the reinserted mark in subtrees of x at x
STOP
}

Step 3: For all z such that z is a l-son of y, l < k and S0(k) ⊂ S0(l):
TEST1(x,z): /* Check if x is dominated by z or a son of z */

{
Calculate k such that x is the k-successor of z
If xi = zi, ∀i ∈ S0(k), STOP
For all v such that v is a l-son of z and S0(k) ⊂ S0(l):
execute TEST1(x,v)
}

Step 4: For all z such that z is a l-son of y, k < l and S1(k) ⊂ S1(l):
Flag = 0
TEST2(x,z): /* Check if x dominates z or a son of z */

{
Calculate k such that x is the k-successor of z
If k = 0, mark z as deleted, Flag = 1
else if Flag = 1, mark z as reinserted
For all v such that v is a l-son of z, and S1(k) ⊂ S1(l):
execute TEST2(x,v)
}

Step 5: If a k-son of y already exists, replace y by the k-son, goto Step 2
else {
Place x as the k-son of y
Delete all the marked nodes in the Quad-tree
Reinsert the nodes with the reinserted mark from the global root
STOP
}

END

Figure 5.6. Quad-tree2 method.

5 Quad-trees 91

10
10
10

23

5
5

11

9
15

25
3

16

8
12

4

110

101001010

011001

5
15
12

14
18
6

40
16
7

Flag: Deleted

Flag: Deleted

Figure 5.7. Quad-tree from Example 3 before inserting the vector (12 15 5).

10
10
10

23

5
5 25

3

16

8
12

4

110011001

010 011

12
15
5

11
15
9

Figure 5.8. Quad-tree from Example 3 after inserting the vector (12 15 5).

In our third variant called Quad-tree3 [8], the deletion problem is solved
differently. The complete algorithm is shown in Figure 5.9 and the included
routines are described as follows.
DELETE(z): This routine deletes the node z. If z has at least one son, then
the lowest numbered son of z becomes the new root of the subtree. So, only
the nodes in the subtrees of the other sons must be considered for reinsertion:

1. Let k = 1. Detach the subtree rooted at z.

92 Mostaghim and Teich

2. If the k-son of z exists, denote it by t, move t to the position of z in the
Quad-tree and goto 4.

3. Let k = k + 1. If k > 2m − 2, RETURN. Otherwise goto 2.
4. For each k such that k + 1 ≤ k ≤ 2m − 2, if the k-son of z exists, denote

it by s and execute REINSERT(t, s).

REPLACE(c, s): In this routine, we replace c with s because c is dominated
by s. So, the successorships in the subtrees of c are not valid any more and
corresponding nodes must be reconsidered again:

1. Detach the subtree rooted at c. Replace c by s.
2. For each k such that 1 ≤ k ≤ 2m − 2, if the k-son of c exists in the

detached subtree, denote it by t and execute RECONSIDER(s, t).
3. Discard c.

REINSERT(c, s): This routine finds the right position in the subtree rooted
at c at which to insert s and its successors. This routine is just called when
we are sure that there is no need for domination test. This case happens, for
example, in the routine DELETE where we take the lowest successor of the
deleted root and make it the new root. Since all other vectors in the detached
subtree are non-dominated with respect to the new root, these vectors need
only be reinserted into the subtree without any dominance tests:

1. For each k such that 1 ≤ k ≤ 2m − 2, if the k-son of s exists, denote it by
t and execute REINSERT(c, t);

2. Determine l such that s is a l-successor of c. If the l-son of c exists, denote
it by t and execute REINSERT(t, s). If the l-son of c does not exist, move
s to the position of the l-son of c.

RECONSIDER(c, s): This routine is called in the REPLACE routine, when
a deleted root is replaced directly by a new vector. In this case, the successors
s of the deleted root may also be dominated by the new vector c. This means
that each successor s of the deleted root must be tested for dominance before
being inserted into the new subtree rooted at c:

1. For each k such that 1 ≤ k ≤ 2m − 2, if the k-son of s exists, denote it by
t and execute RECONSIDER(c, t);

2. Determine l such that s is a l-successor of c
3. If l = 2m, discard s, RETURN.
4. If the l-son of c exists, denote it by t and execute REINSERT(t, s), else

move s to the position of l-son of c in the Quad-tree.

Example 4:

In this example, we illustrate the routine DELETE of the Quad-tree3
algorithm. Consider the Quad-tree in Figure 5.10 and let us insert the
node (12 8 4). As it was explained throughout previous examples and in the
corresponding algorithms, it is obvious that node (14 18 6) is dominated by

5 Quad-trees 93

Algorithm Quad-tree3
BEGIN

Input: x to be inserted into a Quad-tree rooted at y
Output: Updated (domination-free) Quad-tree

Step 1: Let y be the root of the tree
Step 2: Calculate k such that x is the k-successor of y

If k = 2m or if xi = yi, ∀i ∈ S0(k), STOP. /* x is dominated by y */
If k = 0, REPLACE(y,x). STOP. /*y is dominated by x */

Step 3: For all z such that z is a l-son of y, l < k and S0(k) ⊂ S0(l):
TEST1(x,z): /* Check if x is dominated by z or a son of z */

{
Calculate k such that x is the k-successor of z
If xi = zi, ∀i ∈ S0(k), STOP
For all v such that v is a l-son of z, and S0(k) ⊂ S0(l):
execute TEST1(x,v)
}

Step 4: For all z such that z is a l-son of y, k < l and S1(k) ⊂ S1(l):
TEST2(x,z): /* Check if x dominates z or a son of z */

{
Calculate k such that x is the k-successor of z
If k = 0, DELETE(z)
For all v such that v is a l-son of z, and S1(k) ⊂ S1(l):
execute TEST2(x,v)
}

Step 5: If a k-son of y already exists, replace y by the k-son, goto Step 2
else x is the k-son of y, STOP

END

Figure 5.9. Quad-tree3 method.

(12 8 4) and must be deleted. In the routine DELETE of Quad-tree3, node
(14 18 6) is deleted. Since the node (11 14 9) is the (001)-son of (14 18 6), it
is moved to its place and the node (40 12 3) in reinserted again from (11 14
9). The result of this insertion is shown in Figure 5.11.

�

5.4 Use of Quad-trees in MOEA

We have integrated the Quad-tree variants into the SPEA (Strength Pareto
Evolutionary Algorithm) [9]. In this algorithm, there is an external set
(archive) for storing non-dominated solutions of each generation. Updating
the archive in SPEA is done as follows: In each generation, non-dominated
solutions of the actual population are marked first. Then, only these non-

94 Mostaghim and Teich

23

5
5

14
18
6

25
3

16

11

9
14

40
12
3

10
10
10

8
12

4

110

101001

011001

010

100

12
8
4D

el
et

e

M
ov

e

R
ei

ns
er

t

Figure 5.10. Example 4 - Quad-tree by inserting (12 8 4).

23

5
5 25

3

16

10
10
10

8
12

4

11

9
14

40
12
3

110011001

010

100

100

12
8
4

Figure 5.11. Example 4 - Quad-tree.

dominated solutions are considered for insertion into the actual archive. The
archive is always kept domination-free.

In the experiments presented in the next section, the linear list as well
as the three Quad-tree implementations are evaluated using different test
functions and compared. In the three Quad-tree implementations, Quad-trees
are used as the data structure for the archive only but not for the population.
Each individual of the actual population is tentatively inserted into the archive
in each generation. It is obvious that only non-dominated solutions do remain
in the Quad-tree because the Quad-tree is domination-free.

5 Quad-trees 95

In SPEA, the archive as well as the population undergo selection and
tournament selection is applied to individuals of the archive and the actual
population. In order to have equal behavior in our Quad-tree MOEA, we have
therefore implemented a routine that is able to randomly select individuals
for tournament selection in the union of individuals of the population and the
tree archive.

5.5 Experiments

In this section, we introduce different test functions first. Then, experiments
of running the three Quad-tree algorithms and the linear list implementation
for different test functions are presented. In particular, we investigate the
influence of the three parameters of (a) population size |P |, (b) archive size
|A|, and (c) dimension m of the objective space on the CPU time for the linear
list and the three Quad-tree implementations.

5.5.1 Test Functions

There exist many test functions that are used for testing MOEAs, e.g.,
those introduced in Deb et al. [10] and Zitzler et al. [9]. They are built
with consideration to difficulties in MO like converging to the true Pareto-
optimal front and maintaining diversity within the archive. For the following
experiment, we have also used these functions which are 2- to 10-objective
minimization problems. Table 5.1 shows the used test functions. Tests TF1 to
TF6 are optimization problems with 2 objectives:

minimize f(x) = (f1(x1), f2(x))
subject to f2(x) = g(x2, · · · , xn) · h(f1(x1), g(x2, · · · , xn))

where x = (x1, · · · , xn)

DTLZm denotes a class of test problems where m = 1, · · · , 10 indicates the
number of objectives.

Influence of Population size |P | on CPU time for test functions
with m = 2

The first experiments were performed using the two-objective test functions
TF1, TF2, · · · , TF6 with m = 2 dimensions and unbounded archive size. So,
the free parameter is the size |P | of the population. Figure 5.12 and Table 5.2
present and compare the average CPU times over different runs when running
each algorithm for 400 generations and for different population sizes. The
recorded archive sizes for different test functions have ranged depending on
initial seed between 110-127 for TF1, 20-30 for TF2, 190-215 for TF3, 25-33
for TF4, 10-15 for TF5 and 29-38 for TF6 independent on the use of linear

96 Mostaghim and Teich

Table 5.1. Test functions.

Test Function xi

TF1 f1(x1) = x1 n = 30,
g(x2, · · · , xn) = 1 + 9(

∑n
i=2 xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 − √
f1/g

TF2 f1(x1) = x1 n = 30,
g(x2, · · · , xn) = 1 + 9(

∑n
i=2 xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 − (f1/g)2

TF3 f1(x1) = x1 n = 30,
g(x2, · · · , xn) = 1 + 9(

∑n
i=2 xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 − √
f1/g − (f1/g) sin(10πf1)

TF4 f1(x1) = x1 n = 30,
g(x2, · · · , xn) = 1 + 9(

∑n
i=2 xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 − (f1/g)2 − (f1/g) sin(10πf1)

TF5 f1(x1) = x1 n = 10,
g(x2, · · · , xn) = x1 ∈ [0, 1],
1 + 10(n − 1)

∑n
i=2 (x2

i − 10 cos(4πxi)) x2, · · · , xn ∈
h(f1, g) = 1 − √

f1/g − (f1/g) sin(10πf1) [−5, 5]

TF6 f1(x1) = 1 + u(x1) n = 11,
g(x2, · · · , xn) =

∑n
i=2 v(u(xi)) x1 ∈ {0, 1}30,

h(f1, g) = 1/f1 x2, · · · , xn ∈
{0, 1}5

DTLZm f1(x) = (1 + x2
n) cos(x1π/2) cos(x2π/2) · · · cos(xnπ/2) n = m,

f2(x) = (1 + x2
n) cos(x1π/2) cos(x2π/2) · · · sin(xnπ/2) xi ∈ [0, 1]

... m = 3 − 10
fM (x) = (1 + x2

n) sin(x1π/2)

lists or Quad-trees. Therefore, all these experiments have this property that
the archive size |A| is rather small as compared to the population size |P |, i.e.,
|A| � |P | in common. Also, the archive sizes did not grow with increasing
population size (between 100 and 5,000).

Discussion:

• Comparison of Quad-tree1, Quad-tree2, and Quad-tree3: In Figure 5.12,
it can be seen that for large population sizes, there is almost no difference
in CPU time between the three different Quad-tree variants. However, for

5 Quad-trees 97

0 2000 4000 6000 8000 10000
2

4

6

8

10

12

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

2−objective test function (TF1)

Quad−tree1
Quad−tree2
Quad−tree3
Linear list

0 2000 4000 6000 8000 10000
2

4

6

8

10

12

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

2−objectivetest function (TF3)

0 2000 4000 6000 8000 10000
2

4

6

8

10

12

population size

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

2−objective test function (TF4)

0 2000 4000 6000 8000 10000
2

4

6

8

10

12

population size

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

2−objective test function (TF6)

Figure 5.12. Average CPU time for different 2-objective test functions for different
population sizes |P |.

small population sizes, the Quad-tree3 is always the faster implementation
among the three.

• Comparison of Quad-tree and linear list archives: In Figure 5.12, one can
also see that linear list archives perform better for small population sizes,
and depending on the test function, there is a certain population size in
the range of 1,000-5,000 for which the Quad-tree approach becomes faster.
For example, we see in Table 5.2 that Quad-tree3 is almost 10 times faster
than the linear list implementation for larger population sizes.

As a summary, we can conclude that for small dimensions (m) of the
objective space and for problems with |A| � |P |, Quad-trees are the better
data structure for large population sizes.

Influence of number of objectives m and population size |P | on
CPU time

The second set of experiments involve the test of the influence of the
dimensionality m of the objective space and archive size |A| on the CPU time,
again compared for the linear list and the three Quad-tree implementations.

98 Mostaghim and Teich

Table 5.2. Average CPU times in seconds for different population sizes of the six
2-objective test functions TF1 to TF6 (from top to bottom) (Ti/L is the ratio of
Quad-treei’s CPU time to the CPU time when using linear lists.)

|P | linear list Quad-tree1 Quad-tree2 Quad-tree3 T1/L T2/L T3/L
100 30.68 332.90 232.83 118.99 10.85 7.59 3.88
500 294.71 3629.58 1859.02 1133.81 12.32 6.31 3.85

1000 818.54 4952.93 2840.45 1937.81 6.05 3.47 2.37
5000 11299.92 2774.41 2826.68 2794.71 0.25 0.25 0.25

10000 42274.91 4898.97 5100.49 5160.54 0.12 0.12 0.12
100 24.21 120.60 91.05 74.68 4.98 3.76 3.08
500 186.61 244.68 253.87 234.20 1.31 1.36 1.26

1000 537.58 418.46 446.45 456.18 0.78 0.83 0.85
5000 10328.27 2066.73 2218.92 2326.68 0.20 0.21 0.23

10000 40091.71 4142.21 4385.24 4517.08 0.10 0.11 0.11
100 31.82 370.47 234.36 126.56 11.64 7.37 3.98
500 318.48 4389.25 2515.66 1387.84 13.78 7.90 4.36

1000 916.46 9097.29 5283.90 3178.60 9.93 5.77 3.47
5000 12234.25 5383.50 4484.65 4300 0.44 0.37 0.35

10000 44055.57 6163.18 6212.26 6195.52 0.14 0.14 0.14
100 23.35 105.75 99.50 75.45 4.53 4.26 3.23
500 216.72 586.77 363.53 387.83 2.71 1.68 1.79

1000 626.88 745.08 640.92 580.44 1.19 1.02 0.93
5000 10524.19 2176.9 2336.12 2393.23 0.21 0.22 0.23

10000 40317.49 4355.43 4707.76 4655.86 0.11 0.12 0.12
100 20.20 41.66 44.25 45.80 2.06 2.19 2.27
500 176.19 207.11 216.82 228.72 1.18 1.23 1.30

1000 546.19 417 437.26 459.84 0.76 0.80 0.84
5000 10415.29 2104.20 2223.27 2375.99 0.20 0.21 0.23

10000 40410.43 4244.57 4454.04 4632.82 0.11 0.11 0.11
100 14.50 76.92 69.04 36.82 5.30 4.76 2.54
500 161.50 209.84 201.86 165.53 1.30 1.25 1.02

1000 555.29 345.70 342.95 324.13 0.62 0.62 0.58
5000 12090.32 1430.13 1451.23 1543.43 0.12 0.12 0.13

10000 47489.3 2728.1 2819.97 3038.54 0.06 0.06 0.06

Figure 5.13 shows the measured CPU times of different test functions for a
different number of objectives, and again for different population sizes. As
the results of Quad-tree3 were also better than the two other Quad-tree
implementations (this will be discussed later), we just compare Quad-tree3
as Quad-tree with linear list archives.

Discussion:

• Influence of m on CPU time: In Figure 5.13, we can see that for the 3-
objective test function, the Quad-tree can be up to 10 times slower than the
linear list archive with the break-even point of equal CPU time shifted here

5 Quad-trees 99

0 2000 4000 6000 8000 10000
2

4

6

8

10

12

Quad−tree
Linear list

0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

0 0.5 1 1.5 2

x 10
4

4

6

8

10

12

14

0 0.5 1 1.5 2

x 10
4

2

4

6

8

10

12

14

population sizepopulation size

2−objective test function (TF3) 3−objective test function (DTLZ3)

4−objective test function (DTLZ4) 5−objective test function (DTLZ5)

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

C
P

U
−

tim
e

in
 s

ec
on

ds
 (

lo
g)

Figure 5.13. Average CPU time of m-objective test functions for different
population sizes.

up to a population size of |P | = 15, 000. Only for larger population sizes is
the Quad-tree faster here. For the even higher-dimensional test functions
(4 and 5), the linear list implementation is faster than the Quad-tree for
population sizes of up to 20,000 individuals.

• Influence of archive size |A| on CPU time: Contrary to the test functions
with only 2 objectives, we found out that in all of these higher-dimensional
test functions, the archive size increased also with increasing population
size. Figure 5.14 shows the recorded archive sizes for different population
sizes for the 4-objective test function DTLZ4. The archive size of this test
function contains more than 60000 vectors when the population size has
been chosen to 20,000. As it seems that it is not the number m of objectives
alone but the dimensionality of the approximated Pareto-front, and as a
consequence, the archive size |A| that must be taken into account in order
to compare linear lists with Quad-trees, we need to take a deeper look at
the number of reinsertions that must be performed that might become the
bottleneck in performance for problems with large archive sizes.

100 Mostaghim and Teich

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

x 10
4

population size

ar
ch

iv
e

si
ze

Figure 5.14. Archive sizes of the 4-objective test function according to different
population sizes.

Influence of archive size |A| and m on CPU time for large constant
population size |P |
Figure 5.15 shows the CPU times of the Quad-tree and the linear list
implementations for different archive size bounds and a fixed population size
of |P | = 20, 000 for the four test functions DTLZm with m = 3, 4, 5, 6. It can
be seen that the Quad-tree algorithm is faster when the archive size is less
than about 2,000 for the 3-objective test function, 3,000 for the 4-objective
test, 6000 for the 5-objective test and 7,000 for the 6-objective test function.

Discussion:

• The above observation confirms that for increasing archive sizes, the
Quad-tree implementation becomes less competitive than the linear list
implementation. This may be related to the fact that for larger archive
sizes, the number of costly reinsertions of already inserted points can
destroy the advantage gained when not having to walk through the whole
list of Pareto points. Reinsertion takes place for all nodes of subtrees when
their root node is dominated and must be deleted. Therefore, we also record
the number of deletions and reinsertions depending on the archive size.

Table 5.3 lists the number of recorded deletions and reinsertions in a Quad-
tree for different population and archive sizes and test functions with different
number of objectives.

Discussion:

• We can see that the above test functions and SPEA behave such that when
the population size increases, the archive size increases, too.

5 Quad-trees 101

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500
Quad−tree
Linear list

0 2000 4000 6000 8000
0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2

x 10
4

0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2

x 10
4

0

1000

2000

3000

4000

5000

6000

archive sizearchive size

3−objective test function (DTLZ3) 4−objective test function (DTLZ4)

6−objective test function (DTLZ6)5−objective test function (DTLZ5)

C
P

U
−

tim
e

in
 s

ec
on

ds
C

P
U

−
tim

e
in

 s
ec

on
ds

C
P

U
−

tim
e

in
 s

ec
on

ds
C

P
U

−
tim

e
in

 s
ec

on
ds

Figure 5.15. Average CPU time of m-objective test functions DTLZm, m =
3, 4, 5, 6 according to different archive size bounds |A| and fixed population size
|P | = 20000.

Table 5.3. Number of deletions and reinsertions in the Quad-tree archive for the
m-objective test functions DTLZm (T is the CPU time in seconds).

m |P | |A| Deletions Reinsertions T
4 100 290 1111 2600 22

500 1180 6080 15600 432
1000 3300 12200 36150 1280
2000 7150 22050 49500 3235
5000 16350 68650 149770 17200

5 1000 4200 12500 30400 1830
5000 19950 50071 105600 17850

6 1000 3800 12710 29000 2280
5000 18750 57488 127750 30500

7 1000 5200 10000 23000 4240
5000 23400 56400 117650 56700

10 1000 5150 3170 11245 17400
5000 23542 33216 88074 314131

102 Mostaghim and Teich

• The archive size can be much larger than the population size (|P | � |A|).
• Consider now all rows of equal population size 1,000 in Table 5.3. We

observe that for a certain archive size, higher values of m reduce the
number of reinsertions and deletions. This is because each node in the
tree can have at most 2m −2 sons, and for higher values of m, the width of
the tree is considerably higher whereas for smaller values of m, the depth
is considerably higher. For example, for m = 10, each node can have up
to 1,022 sons whereas for m = 4, it can have only up to 14 sons. Hence,
for a given archive size and large m, the tree won’t have a large depth but
rather a large width.

• For lower values of m and certain archive size, the deletion of a dominated
node therefore requires in average a large number of reinsertions because
the subtrees will be larger on average than for archive trees for higher
values of m.

• Finally, the CPU time increases with increasing m because the number of
required comparison increases. For each insertion, at most 2m/2−1 nodes
must be checked if they are dominated by the new vector.

All the above experiments present average values obtained from several
runs of the MOEA with different seeds and equal number of generations. The
values of crossover and mutation probabilities have also been kept constant.

5.5.2 Comparison

From the results and the discussion in the previous section, we can conclude
that the number of comparisons and CPU times depend on three factors:
number of objectives (m), archive size (|A|) and the population size (|P |).

It is recorded by Sun and Steuer [8] that Quad-trees have always better
CPU times than linear lists for storing non-dominated solutions, especially
for large number of points to insert. They have studied 2- to 8-objective tests
with 100-10,000 randomly generated vectors to be considered for inclusion
into an initially empty tree. Hence, they never obtained a tree of size larger
than this number of points. Indeed, with randomly generated sequences, the
archive size in their experiments was always much smaller. The experiments
therefore are only valid in our context for optimization problems with only
1 generation. As our results of implementing the archive data structure into
a MOEA and dynamically updating the archive with elements of the actual
population from generation to generation have shown, the archive size can
grow much larger than the population size. In that case, we found out that
Quad-trees can become slower than linear list implementations. For example,
in Sun and Steuer’s tests, the archive size for an example with 8-objective
and 10,000 vectors for inclusion has been about 2,400 (when the search space
is [0,1]). In the DTLZ test functions that we have chosen, the archive size
can become even as big as 60,000. This was the reason why we were able to
discover that Quad-trees can be worse than linear list implementations.

5 Quad-trees 103

Unfortunately, little is known about the average height of a tree, e.g. binary
trees, when both insertion and deletion are used [13]. So as a rule of thumb, we
can say that Quad-trees are more efficient than linear list archives when used
in MOEAs when the archive sizes are small and the population sizes are large.
When we are dealing with smaller population sizes and larger archive sizes,
our experiments indicate that linear lists take less CPU time than Quad-trees.
Figure 5.16 tries to identify regions of better usefulness of both kinds of data
structures. Therefore, if Quad-trees are used, the size of the archive should
be rather small. Keeping the size of archive as a fixed value is also a desired
property of the MOEA methods, like SPEA, PAES, and others. Under this
restriction we are able to conclude that Quad-trees take less CPU time than
linear lists when used inside MOEAs with restricted archive size.

����
����
����
����

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

| |A

P����
����
����
����
����
����

����
����
����
����
����
����������

m

| |������������
������������
������������
������������

������������
������������
������������
������������
����������������
����������������
����������������
����������������Quad−trees

linear lists

Figure 5.16. Regions of applicability of linear list and Quad-tree as archive data
structures within MOEA depending on the archive size |A|, population size |P | and
number of objectives m.

5.6 Conclusion and Future Work

We have studied and compared Quad-trees as a data structure for the archive
of elitist MOEAs with linear list implementations. It has been shown that
Quad-trees take less computational (CPU) time in comparison to linear lists
for large population sizes and small archive sizes. Hence, as a rule of thumb,
we recommend the use of Quad-trees for problems with large populations but
small archive sizes. This is the case for problems with large search spaces but
where the Pareto fronts are non-continuous curves or just point sets of small
cardinality.

In the future, we would like to investigate and compare other alternative
data structures. Thereby, we will consider also the complexity of other
operations apart from insertion and deletion, such as fitness computation.

104 Mostaghim and Teich

Obviously, this operation might also influence the choice of the data structure
used.

Acknowledgment

We would like to thank Ambrish Tyagi for implementing the three Quad-tree
algorithms and integrating them into the SPEA multiobjective evolutionary
algorithm.

References

1. Deb, K, Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons,Chichester, 2001.

2. Corne, D, Dorigo, M and Glover, F, New Ideas in Optimization. UK, Mc Graw
Hill, 1999.

3. Zitzler, E, Laumanns, M and Thiele, L, SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In EUROGEN 2001, Evolutionary Methods for Design,
Optimisation and Control with Applications to Industrial Problems, 2001.

4. Rudolph, G, On a Multi-Objective Evolutionary Algorithm and Its Convergence
to the Pareto Set. In Proceedings of the 5th IEEE Conference on Evolutionary
Computation, pp. 511-516, IEEE Press, 1998.

5. Rudolph, G and Agapie, A, Convergence Properties of Some Multi-Objective
Evolutionary Algorithms. In Proceedings of the 2000 Congress on Evolutionary
Computation, pp. 1010-1016, Piscataway, NJ, 2000. IEEE Service Center, 2000.

6. Finkel, RA and Bentley, JL, Quad Trees: A Data Structure for Retrieval on
Composite Keys, Acta Informatica, 1974;4: 1-9.

7. Habenicht, W, Quad Trees, a Data Structure for Discrete Vector Optimization
Problems. In Lecture Notes in Economic and Mathematical Systems, pp. 136-
145, Springer-Verlag, 1983.

8. Sun, M and Steuer, RE, Quad Trees and Linear List for Identifying
Nondominated Criterion Vectors. In INFORM Journal on Computing, 1996;
8(4): pp. 367-375.

9. Zitzler, E and Thiele, L, Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. In IEEE
Transactions on Evolutionary Computation, 1999; 3(4): pp. 257-271.

10. Deb, K, Thiele, L, Laumanns, M and Zitzler, E, Scalable Multi-objective
Optimization Test Problems. In IEEE Proceedings, World Congress on
Computational Intelligence (CEC02), USA, 2002.

11. Deb, K, Agrawal, S, Pratap, A and Meyarivan, T, A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA II. In
Parallel Problem Solving from Nature VI (PPSN VI), pp. 849-858, 2000.

12. Goldberg, DE, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

13. Cormen, TH, Leiserson, CE and Rivest, RL, Introduction to Algorithms. The
MIT Press - Mc Graw Hill, 1990.

6

Scalable Test Problems
for Evolutionary Multiobjective Optimization

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns and Eckart Zitzler

Summary. After adequately demonstrating the ability to solve different two-
objective optimization problems, multiobjective evolutionary algorithms (MOEAs)
must demonstrate their efficacy in handling problems having more than two
objectives. In this study, we have suggested three different approaches for
systematically designing test problems for this purpose. The simplicity of
construction, scalability to any number of decision variables and objectives,
knowledge of the shape and the location of the resulting Pareto-optimal front, and
introduction of controlled difficulties in both converging to the true Pareto-optimal
front and maintaining a widely distributed set of solutions are the main features of
the suggested test problems. Because of the above features, they should be found
useful in various research activities on MOEAs, such as testing the performance of a
new MOEA, comparing different MOEAs, and better understanding of the working
principles of MOEAs.

6.1 Introduction

Most earlier studies on multi-objective evolutionary algorithms (MOEAs)
introduced test problems which were either too simple or not scalable in terms
of number of objectives and decision variables. Some test problems were too
complicated to visualize the exact shape and location of the resulting Pareto-
optimal front. Schaffer’s [1] study introduced two single-variable test problems
(SCH1 and SCH2), which have been widely used as test problems. Kursawe’s
test problem [2], KUR, was scalable to any number of decision variables, but
was not scalable in terms of the number of objectives. The same is true with
Fonseca and Fleming’s test problem [3], FON. Poloni et al.’s test problem [4],
POL used only two decision variables. Although the mathematical formulation
of the problem is non-linear, the resulting Pareto-optimal front corresponds to
an almost linear relationship among decision variables. Viennet’s test problem
[5], VNT, has a discrete set of Pareto-optimal fronts, but was designed for
three objectives only. Similar simplicity prevails in the existing constrained
test problems [6, 7].

106 Deb et al.

However, in 1999, the first author, for the first time, introduced a
systematic procedure of designing two-objective test problems which are
simple to construct and are scalable to the number of decision variables [8].
In these problems, the exact shape and location of the Pareto-optimal front
are also known. The basic construction used two functionals, g and h∗, with
non-overlapping sets of decision variables to introduce difficulties towards the
convergence to the true Pareto-optimal front and to introduce difficulties along
the Pareto-optimal front for an MOEA to find a widely distributed set of
solutions, respectively. The construction procedure adopted in that study is
not the only alternative for the test problem design and certainly many other
principles are possible. In the absence of any other systematic construction
procedure, those test problems have been used by many researchers since
then. However, they have also been somewhat criticized for the relative
independence feature of the functionals in achieving both the tasks. Such
critics have overlooked an important aspect of that study. The non-overlapping
property of the two key functionals in the test problems was introduced for
ease of the construction procedure. That study also suggested the use of a
procedure to map the original variable vector (say y) on which an MOEA
works to a different decision variable vector (say x) with a transformation
matrix: x = My. This way, although test problems are constructed for two
non-overlapping sets from x, each dependent variable xi involves a correlation
of all (or many) variables of y. Such a mapping couples both aspects of
convergence and maintenance of diversity and makes the problem harder to
solve. However, Zitzler et al. [9] showed that six test problems designed based
on an uncorrelated version of Deb’s construction procedure were even difficult
to solve exactly using the then-known state-of-the-art MOEAs.

In the recent past, many MOEAs have adequately demonstrated their
ability to solve two-objective optimization problems by including three basic
operators: (1) an elite-preserving operator, (2) a niche-preserving operator,
and (3) a non-domination based selection operator. With the suggestion of a
number of such MOEAs, it is time that they must be investigated for their
ability to solve problems with more than two objectives. In order to help
achieve such studies, it is therefore necessary to develop scalable test problems
for a larger number of objectives. Besides testing an MOEA’s ability to solve
problems with a large number of objectives, the proposed test problems may
also be used for systematically comparing two or more MOEAs. Since one
such test problem can be used to test a particular aspect of multiobjective
optimization, such as for convergence to the true Pareto-optimal front or
maintenance of a good spread of solutions, etc., the test problems can be used
to identify MOEAs which are better in terms of that particular aspect. For
these reasons, these test problems may help provide a better understanding of
the working principles of MOEAs, thereby allowing a user to develop better
and more efficient MOEAs.

In the remainder of the study, we first describe the desired features
needed in a test problem and then suggest three approaches for systematically

6 Scalable Test Problems 107

designing test problems for multiobjective optimization algorithms. Although
most problems are illustrated for three objectives (for ease of illustration), the
test problems are generic and scalable to an arbitrary number of objectives.
Finally, we suggest a set of nine test problems based on the suggested
construction procedures and show the difficulties faced by two MOEAs
(NSGA-II and SPEA2) in solving these problems.

A short version of this study appeared elsewhere [10],but this study
describes different test problem design procedures in a more systematic
manner and presents more simulation results. Hopefully, the techniques
suggested in this study would be useful in designing further test problems
for multiobjective optimization.

6.2 Desired Features of Test Problems

The ultimate goal of developing any optimization algorithm is to solve real-
world optimization problems reliably and efficiently. However, since in real-
world optimization problems the nature of landscape and optimum solution(s)
are not usually known beforehand, at the end of a simulation run, it becomes
difficult to test how well an algorithm has performed. For this purpose, there
is a need to develop test problems for testing optimization algorithms. Since
the landscape and corresponding optimum solution(s) of such problems will
be known, they allow to test an algorithm’s ability to overcome the difficulties
posed by the landscape and ability to converge near the optimum solution(s).
Keeping in mind the ultimate goal of solving real-world problems, it then
becomes important to construct test problems which are representative to
real-world problems. However, since real-world problems can be very different
from each other and since their landscapes may not be known a priori, it is
essential to design a test suite, instead of a single test problem, for the task.
This way, various complexities which may be present in real-world problems
may be introduced systematically in a number of test problems.

Besides handling different landscape complexities, algorithms should be
scalable to the problem size. An algorithm which is efficient in solving a
problem with a few decision variables may not work well (or may work with
exponentially more computations) in higher problem sizes. Therefore, it is
desirable that a test suite, containing test problems each of which is capable
of testing an algorithm’s ability to handle different aspects of landscape
complexity, is also scalable to the problem size. This way, a test problem
not only allows to study a particular landscape complexity, but also allows to
test how that landscape complexity scales with increased problem sizes. Based
on this discussion, we suggest the following features that a test problem suite
should have for adequately testing an MOEA:

1. Test problems should introduce controllable hindrance to converge to the
true Pareto-optimal front and also to find a widely distributed set of

108 Deb et al.

Pareto-optimal solutions. This is because convergence near to the Pareto-
optimal front and maintenance of a diverse set of solutions are two basic
goals in multiobjective optimization.

2. Test problems may be scalable to have any number of decision variables.
This is because many real-world problems usually involve a large number
of decision variables. For all practical purposes, test problems involving a
few hundred variables may be included in the test suite.

3. Test problems should be scalable to have any number of objectives.
Although in most real-world problems the number of objectives can be
reduced to four or five, test problems involving as large as 15 to 20
objectives may be included in the test suite.

4. Test problems may be simple to construct. This may not be an essential
matter for constructing test problems, but if desired features can be
incorporated in test problems with a simple construction procedure, it
is always desirable.

5. The resulting Pareto-optimal front (continuous or discrete) may be easy
to comprehend, and its shape and location may be exactly known. The
corresponding decision variable values may also be easy to find.

6. To make the test problems useful in practice, they should exhibit
difficulties similar to those present in most real-world problems.

It is important to mention that the fifth feature described above may not be of
much importance for comparing two or more MOEAs. But for evaluating an
MOEA’s performance in convergence and maintenance of diversity, knowledge
of the exact Pareto-optimal set is essential.

Along with the test problems designed by keeping the above features in
mind, it does not do any harm to keep a few additional real-world problems
in the test suite. Such problems can be treated as a black-box with a
clearly defined set of input decision variables (and their possible ranges)
and corresponding objective values and constraints (if any). Many such real-
world problems [6, 11] have been already solved using MOEAs and some
representative of them can be included in the test suite. A network design
application problem along with a number of MOEAs already exist on the
PISA [12] web page (http://www.tik.ee.ethz.ch/pisa) for this purpose.

The popularity of two-objective test problems suggested earlier [8] in many
research studies is partly because of the ease of constructing the test problems
and the ease of illustrating the obtained non-dominated solutions against
the true Pareto-optimal solutions in two dimensions. Visually comparing the
obtained set of solutions against the true Pareto-optimal front provides a
clear idea of the performance of an MOEA. This can somewhat be achieved
even for three objectives, with such a comparison shown in three dimensions.
But for problems with more than three objectives, it becomes difficult to
illustrate such a plot. Thus, for higher-objective test problems, it may be
wise to have some regularity in the search space so that the Pareto-optimal
surface is easily comprehensible. One of the ways to achieve this would be to

6 Scalable Test Problems 109

have a Pareto-optimal surface symmetric along interesting hyper-planes, such
as f1 = f2 = · · · = fM−1 (where M is the number of objectives). This only
requires a user to comprehend the interaction between fM and f1, and the rest
of the problem can be constructed by using symmetry. Another interesting
approach would be to construct a problem for which the Pareto-optimal
surface is a symmetric curve or at most a three-dimensional surface. Although
M -dimensional, the obtained solutions can be easily illustrated parametrically
in a two-dimensional plot in the case of a curve and in a three-dimensional
plot in the case of the three-dimensional surface.

It is now well established that MOEAs have two tasks to achieve:
converging as close to the Pareto-optimal front and finding as diverse a
set of solutions on the entire Pareto-optimal front as possible. An MOEA
therefore, should be tested for each of the two tasks. Thus, some test problems
should test an MOEA’s ability to negotiate artificial hurdles which hinder
MOEA’s progress towards converging to the true Pareto-optimal front. This
can be achieved by placing some local Pareto-optimal attractors or biased
density of solutions away from the Pareto-optimal front. Test problems must
also test an MOEA’s ability to find a diverse set of solutions. This can
be achieved by making the Pareto-optimal front non-convex, discrete, and
having variable density of solutions along the front. Although these features
of test problems were also suggested for two-objective problems earlier [8],
the technique can be extended to more than two objectives. In any case, the
increased dimensionality associated with a large number of objectives may
cause added difficulties to MOEAs.

In the following sections, we suggest different approaches of designing test
problems for multiobjective optimization.

6.3 Different Methods of Test Problem Design

Although the main focus of the above discussion is based on solving real-
world problems, there is a need to develop simple-to-understand scalable test
problems for theoretical studies, such as studies for analyzing the running time
complexity of MOEAs. Keeping in mind all the above issues which may be
present in a test problem suite, a number of different construction procedures
can be adopted for multiobjective optimization. Here we discuss three different
methods:

1. Multiple single-objective functions approach,
2. Bottom-up approach,
3. Constraint surface approach.

The first approach is the most intuitive one and has been implicitly used
by early MOEA researchers to construct test problems. In this approach,
M different single-objective functions are used to construct a multiobjective
test problem. To simplify the construction procedure, in many cases, different

110 Deb et al.

objective functions are simply used as different translations of a single
objective function. For example, the problem SCH1 uses the following two
single-objective functions for minimization [1]:

f1(x) = x2, f2(x) = (x − 2)2.

Since the optimum x∗(1) for f1 is not the optimum for f2 and vice versa, the
Pareto-optimal set consists of more than one solution, including the individual
minimum of each of the above functions. All other solutions which make
trade-offs between the two objective functions with themselves and with the
above two solutions become members of the Pareto-optimal set. In the above
problem, all solutions x∗ ∈ [0, 2] become members of the Pareto-optimal set.
Similarly, the problem FON shown below⎧⎪⎪⎨

⎪⎪⎩
Minimize f1(x) = 1 − exp

(
−∑n

i=1(xi − 1√
n
)2
)

,

Minimize f2(x) = 1 − exp
(
−∑n

i=1(xi + 1√
n
)2
)

,

−4 ≤ xi ≤ 4 i = 1, 2, . . . , n.

(6.1)

has x∗
i = −1/

√
n for all i as the minimum solution for f1 and x∗

i = 1/
√

n for
all i as the minimum solution for f2. The Pareto-optimal set is constituted
with all solutions in x∗

i ∈ [−1/
√

n, 1/
√

n] for all i. Veldhuizen [7] lists a
number of other test problems, which follow this construction principle. It
is interesting to note that such a construction procedure can be extended
to problems having more than two objectives as well [13]. In a systematic
procedure, each optimum may be assumed to lie on each of M (usually < n)
coordinate directions. The main advantage of this procedure is its simplicity
and ease of construction. However, the Pareto-optimal set resulting from such
a construction depends on the chosen objective functions, thereby making it
difficult to comprehend the true nature of the Pareto-optimal front. Moreover,
even in simple objective functions (such as in SCH2 [1]), the Pareto-optimal
front may be a combination of disconnected fronts. Thus, a test problem
constructed using this procedure must be carefully analyzed to find the true
Pareto-optimal set of solutions. For running time complexity analysis, a two-
objective leading-ones-trailing-zeros (LOTZ) problem was designed recently
[14].

The latter two approaches of test problem design mentioned above directly
involve the Pareto-optimal front, thereby making them convenient to be used
in practice. Since they require detailed discussions, we devote two separate
sections to describing them.

6.4 Bottom-up Approach

In this approach, a mathematical function describing the Pareto-optimal front
is assumed in the objective space and an overall objective space is constructed

6 Scalable Test Problems 111

Pareto−optimal

1

θ

3

2

front

γ

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0.8
0.6

f

0.4

f

0.2
0

f

Figure 6.1. First quadrant of a unit sphere as a Pareto-optimal front.

from this front to define the test problem. For two objectives, one such
construction was briefly suggested earlier [8] and was extended for higher
objectives elsewhere [6]. Here we outline the generic procedure through a
three-objective example problem:

Step 1: Choose a Pareto-optimal front. The first task in the bottom-up
approach is to choose the Pareto-optimal front. For M objectives, this
means designing a parametric surface involving (M − 1) variables. For
illustration purposes, let us assume that we would like to have a Pareto-
optimal front in a three-objective problem, where all objective functions
take non-negative values and the desired front is the surface of an octant of
a sphere of radius one (as shown in Figure 6.1). With the help of spherical
coordinates (we call them parametric variables) θ, γ, and r (= 1 here),
the front can be described as follows:

f1(θ, γ) = cos θ cos(γ + π/4),
f2(θ, γ) = cos θ sin(γ + π/4),
f3(θ, γ) = sin θ,

where 0 ≤ θ ≤ π/2,
−π/4 ≤ γ ≤ π/4.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.2)

It is clear from the construction of the above surface that if all three
objective functions are minimized, any two points on this surface are non-
dominated to each other.

Step 2: Build the objective space. Using the chosen Pareto-optimal surface,
we construct the complete objective space. A simple way to construct
the rest of the objective space is to construct an extreme boundary
surface parallel to the Pareto-optimal surface, so that the hyper-volume
bounded by these two surfaces constitute the entire objective space. This
can be achieved by introducing an additional variable in the parametric

112 Deb et al.

3

1

space

2

Search

1.5
2 0

0.5
1

1.5
2

0

0.5

1

1.5

2

f

1

f

0.5
0

f

Figure 6.2. Overall search space is bounded by the two spheres.

equations. For the example problem, this can be achieved by multiplying
the above three functions with a radius term, which takes a value greater
than or equal to one. Different values of the third independent variable r
(besides θ and γ) will construct different layers of spherical surfaces on top
of the Pareto-optimal sphere. Thus, the overall problem with the above
three variables is as follows:

Minimize f1(θ, γ, r) = (1 + g(r)) cos θ cos(γ + π/4),
Minimize f2(θ, γ, r) = (1 + g(r)) cos θ sin(γ + π/4),
Minimize f3(θ, γ, r) = (1 + g(r)) sin θ,

0 ≤ θ ≤ π/2,
−π/4 ≤ γ ≤ π/4,
g(r) ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.3)

As described earlier, the Pareto-optimal solutions for the above problem
are as follows:

0 ≤ θ∗ ≤ π/2, −π/4 ≤ γ∗ ≤ π/4, g(r∗) = 0.

Figure 6.2 shows the overall objective space with any function for g(r)
with 0 ≤ g(r) ≤ 1. We shall discuss more about different g(r) functions
a little later. The above construction procedure illustrates how easily a
multiobjective test problem can be constructed from an initial choice of a
Pareto-optimal surface.

Step 3: Construct the decision space. The above construction of the objective
space requires exactly M variables, describing an objective vector
anywhere in the objective space. The final task is to map each decision
variable vector to an objective vector. This mapping provides an
additional flexibility in constructing a test problem. For this mapping,

6 Scalable Test Problems 113

any number of decision variables (n) can be chosen. If n < M , not
all parametric variables are independent, thereby causing a reduction
in dimensionality of the Pareto-optimal surface. For the three-objective
example problem, the three parametric variables used earlier (θ, γ, and
r) can each be considered as a function of n decision variables of the
underlying problem:

θ = θ(x1, x2, . . . , xn), (6.4)
γ = γ(x1, x2, . . . , xn), (6.5)
r = r(x1, x2, . . . , xn). (6.6)

The functions must be so chosen that they satisfy the lower and upper
bounds of θ, γ and g(r) mentioned in Equation 6.3.

Although the above construction procedure is simple, it can be used to
introduce different modes of difficulty described earlier. In the following, we
describe a few such extensions of the above construction.

6.4.1 Difficulty in Converging to the Pareto-optimal Front

The difficulty of a search algorithm to progress towards the Pareto-optimal
front from the interior of the objective space can be introduced by simply using
a difficult g function. It is clear that the Pareto-optimal surface corresponds
to the minimum value of function g. A multi-modal g function with a global
minimum at g∗ = 0 and many local minima at g∗ = νi value will introduce
global and local Pareto-optimal fronts, where a multiobjective optimizer can
get stuck to.

Moreover, even using a unimodal g function, variable density of solutions
can be introduced in the search space. For example, for the three-objective
example problem, if g(r) = r10 is used, denser solutions exist away from the
Pareto-optimal front. Figure 6.3 shows 15,000 solutions, which are randomly
created in the decision variable space of the above problem. On the objective
space, they are shown to be biased away from the Pareto-optimal front. For
such a biased search space away from the Pareto-optimal front, multiobjective
optimizers may have difficulties in converging quickly to the desired front.

6.4.2 Difficulties Across the Pareto-optimal Front

By using a non-linear mapping between parametric and decision variables,
some portion of the search space can be made to have more dense solutions
than the rest of the search space. For example, in the three-objective problem
a variable density of solutions can be created on the Pareto-optimal front
by choosing non-linear expressions for the parametric variables θ and γ in
Equations 6.4 to 6.5. For example, Figures 6.4 and 6.5 show the problem
stated in Equation 6.3 with

114 Deb et al.

1

3

2

2

f

1

f

0.5

1.5

f

0

0.5 1 1.5 2 0 0.5 1 1.5 20

Figure 6.3. The effect of a non-linear g function.

θ(x1) = π
2 x1,

γ(x2) = π
2 x2 − π

4 .
and

θ(x1) = π
2 0.5

(
1 + [2(x1 − 0.5)]11

)
,

γ(x2) = π
2 0.5

(
1 + [2(x2 − 0.5)]11

)− π
4 .

respectively. In both cases, g(r) = r = x3 is chosen. In order to satisfy the
bounds in Equation 6.3, we have chosen 0 ≤ x1, x2, x3 ≤ 1 and 15,000
randomly created points (in the decision space) are shown in each figure
showing the objective space. The figures show the density of solutions in
the search space gets affected by the choice of mapping of the parametric
variables. In the second problem, there is a natural bias for an algorithm to
find solutions in middle region of the search space1. In trying to solve such
test problems, the task of an MOEA would be to find a widely distributed
set of solutions on the entire Pareto-optimal front despite the natural bias of
solutions in certain regions on the Pareto-optimal front.

6.4.3 Generic Sphere Problem

The following is a generic problem to that described in Equation 6.3, having
M objectives.

Minimize f1(θ, r) = (1 + g(r)) cos θ1 cos θ2 · · · cos θM−2 cos θM−1,
Minimize f2(θ, r) = (1 + g(r)) cos θ1 cos θ2 · · · cos θM−2 sin θM−1,
Minimize f3(θ, r) = (1 + g(r)) cos θ1 cos θ2 · · · sin θM−2,
...

...
Minimize fM−1(θ, r) = (1 + g(r)) cos θ1 sin θ2,
Minimize fM (θ, r) = (1 + g(r)) sin θ1,

0 ≤ θi ≤ π/2, for i = 1, 2, . . . , (M − 1),
g(r) ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.7)

1In three-objective knapsack problems, such a biased search space is observed
elsewhere [15].

6 Scalable Test Problems 115

1

3

2

0.5

1

1.5

2 0
0.5

1
1.5

2

0

0.5

1

1.5

2

f

0

f

f

Figure 6.4. Linear mapping (15,000 points).

2

1

3

2

f

0

1

1

1.5

2 0
0.5

1
1.5

2

0.5

1.5

f

0.5

f

0

Figure 6.5. Non-linear mapping introduces bias in the search space (15,000 points).

Note that the variables are mapped in a different manner here. The decision
variables are mapped to the parametric variable vector θ (of size (M − 1)) as
follows:

θi =
π

2
xi, for i = 1, 2, . . . , (M − 1). (6.8)

116 Deb et al.

The above mapping and the condition on θi in Equation 6.7 restrict each of
the above xi to lie within [0, 1]. The rest (n−M +1) of the decision variables
are defined as the r vector (or ri = xM+i−1 for i = 1, 2, . . . , (n − M + 1)) and
a suitable g(r) is chosen. It is clear that the above generic sphere function is
defined for n ≥ M .

The Pareto-optimal surface always occurs for the minimum of g(r)
function. For example, if the function g(r) = ‖r‖2 with ri ∈ [−1, 1] is chosen,
the Pareto-optimal surface corresponds to ri = 0 and the optimal function
values must satisfy the following condition:

M∑
i=1

(f∗
i)2 = 1. (6.9)

As mentioned earlier, the difficulty of the above test problem can also be
varied by using different functionals for fi and g.

6.4.4 Curve Problem

Instead of having a complete M -dimensional surface as the Pareto-optimal
surface, a lower-dimensional surface can also be chosen as the Pareto-optimal
front to the above problem. We realize that in this case not all θi variables will
be independent to each other. For example, in the case of an M -dimensional
curve as the Pareto-optimal front, there would be only one independent
variable describing the Pareto-optimal front. A simple way to achieve this
would be to use the following mapping of variables:

θi =
π

4(1 + g(r))
(1 + 2g(r)xi) , for i = 2, 3, . . . , (M − 1), (6.10)

The above mapping ensures that the curve is the only non-dominated region
in the entire search space. Since g(r) = 0 corresponds to the Pareto-optimal
front, θi = π/4 for all but the first variable. The advantage of this problem
over the generic sphere problem as a test problem is that a two-dimensional
plot of Pareto-optimal points with fM and any other fi will mark a curve
(circular or elliptical). A plot with any two objective functions (other than
fM) will show a straight line. Figure 6.6 shows a sketch of the objective space
and the resulting Pareto-optimal curve for a three-objective version of the
above problem. One drawback with this formulation is that the density of
solutions closer to the Pareto-optimal curve is more than anywhere else in
the search space. In order to make the problem more difficult, a non-linear
g(r) function with a higher density of solutions away from g(r) = 0 (such as
g(r) = 1/‖r‖α, where α � 1) can be used. Using a multi-modal g(r) function
will also cause multiple local Pareto-optimal surfaces to exist. Interestingly,
this drawback of the problem can be used to create a hard maximization
problem. If all the objectives are maximized in the above problem, the top
surface becomes the desired Pareto-optimal front. Since there exist less dense

6 Scalable Test Problems 117

1 2

Pareto−optimal
curve

3

1.5
0

0.5
1

1.5

0

0.5

1

1.5

2

1
0.5

f

0

f f

Figure 6.6. The search space and the Pareto-optimal curve.

solutions on this surface, this problem may be a difficult maximization test
problem.

Degeneration of the Pareto-optimal front to a low-dimensional surface
(such as a curve) is not a mere fantasy. This can happen in problems
where some objectives are likely to be non-conflicting to each other. For
example, in a recent gearbox design problem having three objectives of
minimizing overall volume of the gearbox, maximizing power delivered, and
minimizing distance between input-output shafts, a three-dimensional curve
appeared as the obtained non-dominated front [16]. This is because of the
fact that minimization of the first and the third objectives are not intuitively
contradictory to each other.

6.4.5 Test Problem Generator

The earlier study [6] suggested a generic multiobjective test problem
generator, which belongs to this bottom-up approach. For M objective
functions, with a complete decision variable vector partitioned into M non-
overlapping groups

x ≡ (x1,x2, . . . ,xM−1,xM)T ,

the following function was suggested:

118 Deb et al.

1

2

3

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f

0

f

f

Figure 6.7. A non-convex Pareto-optimal front.

Minimize f1(x1),
Minimize f2(x2),

...
...

Minimize fM−1(xM−1),
Minimize fM (x) = g(xM)h (f1(x1), f2(x2), . . . , fM−1(xM−1), g(xM)) ,

subject to xi ∈ R
|xi|, for i = 1, 2, . . . , M.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.11)
Here, the Pareto-optimal front is described by solutions which are global
minimum of g(xM) (with g∗). Thus, the Pareto-optimal front is described
as

fM = g∗h(f1, f2, . . . , fM−1). (6.12)

Since g∗ is a constant, the h function (with a fixed g = g∗) describes the
Pareto-optimal surface. In the bottom-up approach of test problem design,
the user can first choose an h function in terms of the objective function
values, without caring about the decision variables at first. For example, for
constructing a problem with a non-convex Pareto-optimal front, a non-convex
h function can be chosen, such as the following:

h(f1, f2, . . . , fM−1) = 1 −
(∑M−1

i=1 fi

β

)α

, (6.13)

where α > 1. Figure 6.7 shows a non-convex Pareto-optimal front with α = 2
for M = 3 and β = 0.5.

A disjoint set of Pareto-optimal fronts can be constructed by simply
choosing a multi-modal h function as done in the case of two-objective test
problem design [8]. Figure 6.8 illustrates a disconnected set of Pareto-optimal

6 Scalable Test Problems 119

patches

2
1

Pareto−optimal

3

2
3
4
5
6
7

0.5 10 0.50

f

1

f

0

1

f

Figure 6.8. A disjoint set of Pareto-optimal regions.

surfaces (for three objectives), which can be generated from the following
generic h function:

h(f1, f2, . . . , fM−1) = 2M −
M−1∑
i=1

(2fi + sin(3πfi)) . (6.14)

Once the h function is chosen, a g function can be chosen to construct
the entire objective space. It is important to note that the g function is
defined over a set of decision variables. Recall also that the Pareto-optimal
front corresponds to the global minimum value of the g function. Any other
values of g will represent a surface parallel to the Pareto-optimal surface.
All points in this parallel surface will be dominated by some solutions in the
Pareto-optimal surface. As mentioned earlier, the g function can be used to
introduce complexities in approaching towards the Pareto-optimal region. For
example, if g has a local minimum, a local Pareto-optimal front exists on the
corresponding parallel surface.

Once appropriate h and g functions are chosen, f1 to fM−1 can be chosen
as functions of different non-overlapping sets of decision variables. Using a
non-linear objective function introduces a variable density of solutions along
that objective. The non-linearity in these functions will test an MOEA’s
ability to find a good distribution of solutions, despite the natural non-uniform
density of solutions in the objective space. Another way to make the density
of solutions non-uniform is to use an overlapping set of decision variables for
objective functions. To construct more difficult test problems, the procedure of
mapping the decision variables to an intermediate variable vector, as suggested
earlier [8] can also be used here.

120 Deb et al.

The recently suggested two-objective counting-ones-counting-zeros problem
(COCZ problem) is a test problem developed using the bottom-up approach
for running time complexity analysis [17].

6.4.6 Advantages and Disadvantages of the Bottom-up Approach

The advantage of using the above bottom-up approach is that the exact form
of the Pareto-optimal surface can be controlled by the developer. The number
of objectives and the variability in density of solutions can all be controlled
by choosing appropriate functions.

Since the Pareto-optimal front must be expressed mathematically, some
complicated Pareto-optimal fronts can be difficult to write mathematically.
Like the two-objective problems suggested in Deb [8], these problems may
also be criticized because of their variable-wise decomposable nature, but we
would like to emphasize that this feature is primarily used to facilitate the
introduction of different problem difficulties in a simple manner. As before, the
problems can be made more complex by using the variable mapping (x = My)
discussed in Section 6.1. Nevertheless, the ability to control different features
of the problem is the main strength of this approach.

6.5 Constraint Surface Approach

Unlike starting from a pre-defined Pareto-optimal surface in the bottom-up
approach, the constraint surface approach begins by predefining the overall
search space. In the following, we describe the construction procedure.

Step 1: Choose a basic objective space. First, a simple M -dimensional
bounded region, such as a rectangular hyper-box or an M -dimensional
hyper-sphere, is assumed. We illustrate the construction principle here
with a hyper-box. Each objective function value is restricted to lie within
a predefined lower and a upper bound. The resulting problem is as follows:

Minimize f1(x),
Minimize f2(x),
...

...
Minimize fM (x),
Subject to f

(L)
i ≤ fi(x) ≤ f

(U)
i for i = 1, 2, . . . , M.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.15)

It is intuitive that the Pareto-optimal set of the above problem has
only one solution (the solution with the lower bound of each objective
(f (L)

1 , f
(L)
2 , . . . , f

(L)
1)T . Figure 6.9 shows this problem for three objectives

(with f
(L)
i = 0 and f

(U)
i = 1) and the resulting singleton Pareto-optimal

solution f = (0, 0, 0)T) is also marked.

6 Scalable Test Problems 121

Pareto−optimal point0
1 1

1

f

f f2

3

1

Search space

Figure 6.9. Entire cube is the search space. The origin is the sole Pareto-optimal
solution.

Step 2: Eliminate part of the objective space. Next, a number of constraints
(linear or non-linear) involving the objective function values are added:

gj(f1, f2, . . . , fM) ≥ 0, for j = 1, 2, . . . , J. (6.16)

This is done to chop off portions of the original bounded region
systematically. Figure 6.10 shows the resulting feasible region after adding
the following two linear constraints on the originally chosen three-
objective rectangular box:

g1 ≡ f1 + f3 − 0.5 ≥ 0,

g2 ≡ f1 + f2 + f3 − 0.8 ≥ 0.

What remains is the feasible search space. The objective of the above
problem is to find the non-dominated portion of the boundary of the
feasible search space. Figure 6.10 also marks the Pareto-optimal surface
of the above problem. For simplicity and easier comprehension, each
constraint involving at most two objectives (similar to the first constraint
above) can be used.

Step 3: Map decision variable space to objective space. The final task is to
map each decision variable vector to the objective space. This can be
achieved by choosing each objective function fi as a linear or non-linear
function of n decision variables.

Interestingly, there exist two-variable and three-variable constrained test
problems TNK [18] and problems [19] in the literature using the above
concept. In these problems, only two objectives (with fi = xi) and two
constraints were used. The use of fi = xi made a uniform density of solutions
in the search space. As an illustration of further difficulties through non-linear

122 Deb et al.

1f

1

0.8

0.8
0

0.5

Search space

constraint 1 constraint 2

Pareto−optimal front

1
2f

1

f3

Figure 6.10. Two constraints are added to eliminate a portion of the cube, thereby
resulting in a more interesting Pareto-optimal front.

fi, we construct the following three-objective problem with a bias in the search
space:

Minimize f1(x1) = 1 + (x1 − 1)5,
Minimize f2(x2) = x2,
Minimize f3(x3) = x3,
Subject to g1 ≡ f2

3 + f2
1 − 0.5 ≥ 0,

g2 ≡ f2
3 + f2

2 − 0.5 ≥ 0,
0 ≤ x1 ≤ 2,
0 ≤ x2, x3 ≤ 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.17)

Figure 6.11 shows 25,000 feasible solutions randomly generated in the decision
variable space. The Pareto-optimal curve and the feasible region are shown in
the figure. Because of the non-linearity in the functional f1 with x1, the search
space results in a variable density of solutions along the f1 axis. Solutions are
more dense near f1 = 1 than any other region in the search space. Although
this apparent plane (f1 = 1) is not a local Pareto-optimal front, an MOEA
may get attracted here simply because of the sheer density of solutions near
it.

It is clear that by choosing complicated functions of f1 to fM , more
complicated search spaces can be created. Since the task of an MOEA is
to reach the Pareto-optimal region (which is located at one end of the feasible
search space), interesting hurdles in the search space can be placed to provide
difficulties to an MOEA to reach the desired Pareto-optimal front.

6.5.1 Advantages and Disadvantages

The construction process here is simpler compared to the bottom-up approach.
Simple geometric constraints can be used to construct the feasible search

6 Scalable Test Problems 123

1curve

3

2

Pareto−optimal
1 1.5 2 0

0.5
1

0

0.2

0.4

0.6

0.8

1

f

0.5 f0

f

Figure 6.11. Non-linearity in functionals produces non-uniform density of solutions.

space. Using this procedure, different shapes (convex, non-convex, or discrete)
of the Pareto-optimal region can be generated. Using a systematic choice of
constraint surfaces, scalable test problems can be constructed. Unlike the
bottom-up approach, here the feasible search space is not constructed by
layer-wise construction from the Pareto-optimal front. Since no particular
structure is used, the feasible objective space can be derived with any non-
linear mapping of the decision variable space.

However, the resulting Pareto-optimal front will, in general, be hard to
express mathematically. Moreover, although the constraint surfaces can be
simple, the shape and continuity of the resulting Pareto-optimal front may
not be easy to visualize. Another difficulty is that since the Pareto-optimal
front will lie on one or more constraint boundaries, a good constraint-handling
strategy must be used with an MOEA. Thus, this approach may be ideal for
testing MOEAs for their ability to handle constraints.

6.6 Difficulties with Existing MOEAs

Most MOEA studies up until now have considered two objectives, except a
few application studies where more than two objectives are used. This is not
to say that the existing MOEAs cannot be applied to problems having more
than two objectives. Developers of the state-of-the-art MOEAs (such as PAES
[20], SPEA [15], NSGA-II [21] and others) have all considered the scalability
aspect while developing their algorithms. The domination principle, non-
dominated sorting algorithms, elite-preserving and other EA operators can

124 Deb et al.

all be extended for handling more than two objectives. Although the niching
operator can also be applied in most cases, their computational issues and
ability in maintaining a good distribution of solutions need to be investigated
in higher-objective problems. For example, a niching operator may attempt to
maintain a good distribution of solutions by replacing a crowded solution with
a less crowded one and the crowding of a solution may be determined by the
distance from its neighbors. For two objectives, the definition of a neighbor
along the Pareto-optimal curve is clear and involves only two solutions (left
and right solutions). However, for more than two objectives, when the Pareto-
optimal front is a higher-dimensional surface, it is not clear which (and how
many) solutions are neighbors of a solution. Even if a definition can be
made, calculation of a metric to compute distances from all neighbors gets
computationally expensive because of the added dimensionality. Although a
widely distributed set of solutions can be found, as using NSGA-II or SPEA2,
the obtained distribution can be far from being a uniformly distributed set of
points on the Pareto-optimal surface. Niching methods are usually designed
to attain a uniform distribution (provided that the EA operators are able to
generate the needed solutions), the overall process may be much slower in
problems with a large number of objectives. The test problems suggested in
this study will certainly enable researchers to make such a complexity study
for the state-of-the-art MOEAs.

Although the distribution of solutions is a matter to test for problems
with a large number of objectives, it is also important to keep track of the
convergence to the true Pareto-optimal front. Because of sheer increase in the
dimensionality in the objective space, interactions among decision variables
may produce difficulties in terms of having local Pareto-optimal fronts and
variable density of solutions. An increase in dimensionality of the objective
space also causes a large proportion of a random initial population to be
non-dominated to each other [6], thereby reducing the effect of the selection
operator in an MOEA. Thus, it is also important to test if the existing
domination-based MOEAs can reach the true Pareto-optimal front in such
test problems. Since the desired front will be known in test problems, a
convergence metric (such as average distance to the front) can be used to
track the convergence of an algorithm.

6.7 Test Problem Suite

Using the latter two approaches of test problem design discussed in this study,
we suggest here a representative set of test problems – DTLZ problems named
with the first letter of the last names of the authors. In all cases, the problem
can be made more difficult by using a different set of variables y obtained
from the decision variable vector x by a transformation: y = Mx (where M
is a n×n transformation matrix). However, other more interesting and useful
test problems can also be designed using the techniques of this study.

6 Scalable Test Problems 125

6.7.1 Test Problem DTLZ1

As a simple test problem, we construct an M -objective problem with a linear
Pareto-optimal front:

Minimize f1(x) = 1
2x1x2 · · ·xM−1(1 + g(xM)),

Minimize f2(x) = 1
2x1x2 · · · (1 − xM−1)(1 + g(xM)),

...
...

Minimize fM−1(x) = 1
2x1(1 − x2)(1 + g(xM)),

Minimize fM (x) = 1
2 (1 − x1)(1 + g(xM)),

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.18)

The last k = (n − M + 1) variables are represented as xM . The functional
g(xM) requires |xM | = k variables and must take any function with g ≥ 0.
We suggest the following:

g(xM) = 100

[
|xM | +

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

]
. (6.19)

The Pareto-optimal solution corresponds to xi = 0.5 (for all xi ∈ xM) and
the objective function values lie on the linear hyper-plane:

∑M
m=1 f∗

m = 0.5.
The only difficulty provided by this problem is the convergence to the Pareto-
optimal hyper-plane. The search space contains (11k −1) local Pareto-optimal
fronts, where an MOEA can get attracted before reaching the global Pareto-
optimal front.

To demonstrate how a couple of state-of-the-art MOEAs perform on this
and other test problems suggested in this study, we have applied NSGA-II
and SPEA2 to the three-objective (M = 3) version of the problems. In all
cases, a population of size 100 is used. Since all test problems involve real
parameters, the SBX recombination operator (with ηc = 15) and a variable-
wise polynomial mutation operator (with ηm = 20) [6] are used in all cases.
The crossover probability of 1.0 and mutation probability of 1/n are used.

The performances of NSGA-II and SPEA2 on DTLZ1 after 300 generations
are shown in Figures 6.12 and 6.13, respectively. The figure shows that
both NSGA-II and SPEA2 come close to the Pareto-optimal front and the
distributions of solutions over the Pareto-optimal front are also not bad.
In this problem and in most of the latter problems, we observed a better
distribution of solutions with SPEA2 compared to NSGA-II. However, the
better distributing ability of SPEA2 comes with a larger computational
complexity in its selection/truncation approach compared to that needed in
the objective-wise crowding approach of NSGA-II. The problem can be made
more difficult by using a more difficult g function or a variable transformation
technique suggested earlier. By merely increasing the number of decision
variables used in x, the problem can be made harder.

126 Deb et al.

1

21

2

3 3

0 0

f 0.50.5

0.25

f

0.6

0.4
0.3
0.2
0.1

0

0.5

f

0

0.1

0.2

0.3

0.4

0.5

0.6

f

ff

0.25

0 0.25 0.5
0.75 0

0.25 0.5

Figure 6.12. The NSGA-II population on test problem DTLZ1.

3

1

21

3

2f

0.6

0.5

0.4

0.3

0.2

0.1

0

0.5

0.25

0

0.5

0 0.25 0.5

0

0.75
0.25

0.50

0.1

0.2

0.3

0.4

0.5

0.6

f

0.25

f

0

f

f

f

Figure 6.13. The SPEA2 population on test problem DTLZ1.

6.7.2 Test Problem DTLZ2

This test problem is identical to the problem described in Section 6.4.3:

6 Scalable Test Problems 127

3

2

1

0.25
0.5
0.75

1
1.25

0 0.25 0.5 0.75 1 1.25

0

0.25

0.5

0.75

1

f

0

f

f

Figure 6.14. The NSGA-II population on test problem DTLZ2.

Min. f1(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Min. f2(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Min. f3(x) = (1 + g(xM)) cos(x1π/2) · · · sin(xM−2π/2),
...

...
Min. fM (x) = (1 + g(xM)) sin(x1π/2),
with g(xM) =

∑
xi∈xM

(xi − 0.5)2,
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.20)
Once again, the x vector is constructed with k = n − M + 1 variables. The
Pareto-optimal solutions corresponds to xi = 0.5 for all xi ∈ xM and all
objective function values must satisfy Equation 6.9. NSGA-II and SPEA2 with
identical parameter setting as in DTLZ1 simulation runs and with k = 10 find
Pareto-optimal solutions very close to the true Pareto-optimal front after 300
generations, as shown in Figures 6.14 and 6.15, respectively.

This function can also be used to investigate an MOEA’s ability to scale
up its performance in a large number of objectives. Like in DTLZ1, for M > 3,
the Pareto-optimal solutions must lie inside the first octant of the unit sphere
in a three-objective plot with fM as one of the axes. Since all Pareto-optimal
solutions need to satisfy

∑M
m=1 f2

m = 1, the difference between the left term
with the obtained solutions and one can be used as a metric for convergence
as well. Besides the suggestions given in DTLZ1, the problem can be made

128 Deb et al.

3

2

1

0
0.25

0.5
0.75

1
1.25

0 0.25 0.5 0.75 1.25

0

0.25

0.5

0.75

1

f

1

f

f

Figure 6.15. The SPEA2 population on test problem DTLZ2.

more difficult by replacing each variable xi (for i = 1 to (M − 1)) with the
mean value of p variables: xi = 1

p

∑ip
k=(i−1)p+1 xk.

6.7.3 Test Problem DTLZ3

In order to investigate an MOEA’s ability to converge to the global Pareto-
optimal front, we suggest using the above problem with the g function given
in Equation 6.19:

Min. f1(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) cos(xM−1π/2),
Min. f2(x) = (1 + g(xM)) cos(x1π/2) · · · cos(xM−2π/2) sin(xM−1π/2),
Min. f3(x) = (1 + g(xM)) cos(x1π/2) · · · sin(xM−2π/2),
...

...
Min. fM (x) = (1 + g(xM)) sin(x1π/2),
with g(xM) = 100

[|xM | +
∑

xi∈xM
(xi − 0.5)2 − cos(20π(xi − 0.5))

]
,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.21)
The above g function introduces (3k − 1) local Pareto-optimal fronts and one
global Pareto-optimal front. All local Pareto-optimal fronts are parallel to
the global Pareto-optimal front and an MOEA can get stuck at any of these
local Pareto-optimal fronts, before converging to the global Pareto-optimal
front (at g∗ = 0). The global Pareto-optimal front corresponds to xi = 0.5

6 Scalable Test Problems 129

1

3

12

2

3

f

0

0.5

1

0

0.5

1

0

1

f

f

f

1
f

0.5

0.5

0.5 1 0 0.5 1

f

0
0

Figure 6.16. The NSGA-II population on test problem DTLZ3.

for xi ∈ xM . The next local Pareto-optimal front is at g∗ = 1. NSGA-II and
SPEA2 populations (using k = 10) after 500 generations are shown in the true
Pareto-optimal fronts in Figures 6.16 and 6.17. It is seen that both algorithms
could not quite converge on to the true front, however both algorithms have
maintained a good diversity of solutions on the true front. The problem can be
made more difficult by using a larger k or a higher-frequency cosine function.

6.7.4 Test Problem DTLZ4

In order to investigate an MOEA’s ability to maintain a good distribution
of solutions, we modify problem DTLZ2 with a different parametric variable
mapping:

Min. f1(x) = (1 + g(xM)) cos(xα
1 π/2) · · · cos(xα

M−2π/2) cos(xα
M−1π/2),

Min. f2(x) = (1 + g(xM)) cos(xα
1 π/2) · · · cos(xα

M−2π/2) sin(xα
M−1π/2),

Min. f3(x) = (1 + g(xM)) cos(xα
1 π/2) · · · sin(xα

M−2π/2),
...

...
Min. fM (x) = (1 + g(xM)) sin(xα

1 π/2),
with g(xM) =

∑
xi∈xM

(xi − 0.5)2,
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.22)

130 Deb et al.

1 2

3

3

1
2

f

f

f
f

1

0.5

0

1

0.5

0

1

0.5

0

00

0.5

1

0.5 1 0 0.5 1

f f

Figure 6.17. The SPEA2 population on test problem DTLZ3.

The parameter α = 100 is suggested here. This modification allows a dense
set of solutions to exist near the fM -f1 plane (as in Figure 6.5). NSGA-II and
SPEA2 populations (using k = 10) at the end of 200 generations are shown
in Figures 6.18 and 6.19, respectively. For this problem, the final population
is found to be dependent on the initial population. But in both methods,
we have obtained either of the three different outcomes: (1) all solutions are
in the f3-f1 plane, (2) all solutions are in the f1-f2 plane, or (3) solutions
are on the entire Pareto-optimal surface. Since the problem has more dense
solutions near the f3-f1 and f1-f2 planes, some simulation runs of NSGA-II
and SPEA2 get attracted to these planes. Problems with a biased density of
solutions at other regions in the search space may also be created using the
mapping suggested in Section 6.4.2. It is interesting to note that although the
search space has a variable density of solutions, the classical weighted-sum
approaches or other directional methods may not have any added difficulty
in solving these problems compared to DTLZ2. Since MOEAs attempt to
find multiple and well-distributed Pareto-optimal solutions in one simulation
run, these problems may hinder MOEAs to achieve a well-distributed set of
solutions.

6.7.5 Test Problem DTLZ5

The mapping of θi in the test problem DTLZ2 can be replaced with that given
in Equation 6.10:

6 Scalable Test Problems 131

2

1

3

0.5

1

1.5
0 0.5 1 1.5

0.5

1

1.5

f

f

f

0
0

Run 2
Run 3

Run 1

Figure 6.18. The NSGA-II population on test problem DTLZ4. Three different
simulation runs are shown.

Min. f1(x) = (1 + g(xM)) cos(θ1π/2) · · · cos(θM−2π/2) cos(θM−1π/2),
Min. f2(x) = (1 + g(xM)) cos(θ1π/2) · · · cos(θM−2π/2) sin(θM−1π/2),
Min. f3(x) = (1 + g(xM)) cos(θ1π/2) · · · sin(θM−2π/2),
...

...
Min. fM (x) = (1 + g(xM)) sin(θ1π/2),
with θi = π

4(1+g(xM)) (1 + 2g(xM)xi) , for i = 2, 3, . . . , (M − 1),
g(xM) =

∑
xi∈xM

(xi − 0.5)2,
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.23)
The Pareto-optimal front corresponds to xi = 0.5 for all xi ∈ xM and
function values satisfy

∑M
m=1 f2

m = 1. This problem will test an MOEA’s
ability to converge to a curve and will also allow an easier way to visually
demonstrate (just by plotting fM with any other objective function) the
performance of an MOEA. Since there is a natural bias for solutions close
to this Pareto-optimal curve, this problem may be easy for an algorithm to
solve, as shown in Figure 6.20 and 6.21 obtained using NSGA-II and SPEA2
after 200 generations and with other parameter settings as before and with
k = 10.

132 Deb et al.

3

2

1

Run 3

Run 1

0

0.5

1

1.5
0 0.5 1 1.5

0

0.5

1

1.5

f

Run 2

f

f

Figure 6.19. The SPEA2 population on test problem DTLZ4. Three different
simulation runs are shown.

3

1

20.5
1 0

0.5

1
0

0.5

1

f
0

f

f

Figure 6.20. The NSGA-II population on test problem DTLZ5.

6.7.6 Test Problem DTLZ6

The above test problem can be made harder by making a similar modification
to the g function in DTLZ5, as done in DTLZ3. However, in DTLZ6, we use

6 Scalable Test Problems 133

3

1

20.5
1 0

0.5

1
0

0.5

1

f
0

f

f

Figure 6.21. The SPEA2 population on test problem DTLZ5.

2

1

3

0.5
1 0

0.5

1
0

0.5

1

f

0
f

f

Figure 6.22. The NSGA-II population on test problem DTLZ6.

a different g function:
g(xM) =

∑
xi∈xM

x0.1
i . (6.24)

Here, the Pareto-optimal front corresponds to xi = 0 for all xi ∈ xM . The size
of xM vector is chosen as 10 and the total number of variables is identical as
in DTLZ5. The above change in the problem makes NSGA-II and SPEA2
difficult to converge to the true Pareto-optimal front as in DTLZ5. The
population after 500 generations of both algorithms are shown in Figures 6.22
and 6.23, respectively. The Pareto-optimal curve is also marked on the plots.
It is clear from the figures that both NSGA-II and SPEA2 do not quite

converge to the true Pareto-optimal curve. The lack of convergence to the

134 Deb et al.

3

1
2

0.5
1 0

0.5

1
0

0.5

1

f
0

f

f

Figure 6.23. The SPEA2 population on test problem DTLZ6.

true front in this problem causes these MOEAs to find a dominated surface
as the obtained front, whereas the true Pareto-optimal front is a curve. In
real-world problems, this aspect may provide misleading information about
the properties of the Pareto-optimal front, a matter which we discuss more in
Section 6.8.

6.7.7 Test Problem DTLZ7

This test problem is constructed using the problem stated in Equation 6.11.
This problem has a disconnected set of Pareto-optimal regions:

Minimize f1(x1) = x1,
Minimize f2(x2) = x2,

...
...

Minimize fM−1(xM−1) = xM−1,
Minimize fM (x) = (1 + g(xM))h(f1, f2, . . . , fM−1, g),

where g(xM) = 1 + 9
|xM |

∑
xi∈xM

xi,

h(f1, f2, . . . , fM−1, g) = M −∑M−1
i=1

[
fi

1+g (1 + sin(3πfi))
]
,

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.25)
This test problem has 2M−1 disconnected Pareto-optimal regions in the search
space. The functional g requires k = |xM | = n − M + 1 decision variables.
The Pareto-optimal solutions corresponds to xM = 0. This problem will test
an algorithm’s ability to maintain subpopulation in different Pareto-optimal
regions. For a problem with k = 20 and M = 3, Figures 6.24 and 6.25 show the
NSGA-II and SPEA2 populations after 200 generations. It is clear that both
algorithms are able to find and maintain stable and distributed subpopulations

6 Scalable Test Problems 135

3

1
2

0.25
0.5

0.75
1 0

0.25

0.5

0.75

1

1

1.5

2

2.5

3

3.5

f

0

f

f

Figure 6.24. The NSGA-II population on test problem DTLZ7.

3

1
2

0.25
0.5

0.75
1 0

0.25

0.5

0.75

1

1

1.5

2

2.5

3

3.5

f
0

f

f

Figure 6.25. The SPEA2 population on test problem DTLZ7.

in all four disconnected Pareto-optimal regions. The problem can be made
harder by using a higher-frequency sine function or using a multi-modal g
function as described in Equation 6.19.

6.7.8 Test Problem DTLZ8

Here, we use the constraint surface approach to construct the following test
problem:

136 Deb et al.

3

1

2

0.25
0.5

0.75
1 0

0.25
0.5

0.75
1

0

0.25

0.5

0.75

1

f

0

f

f

Figure 6.26. The NSGA-II population of non-dominated solutions on test problem
DTLZ8.

Minimize fj(x) = 1
� n

M �
∑�j n

M �
i=�(j−1) n

M � xi, j = 1, 2, . . . , M,

Subject to gj(x) = fM (x) + 4fj(x) − 1 ≥ 0, for j = 1, 2, . . . , (M − 1),
gM (x) = 2fM (x) + minM−1

i,j=1
i�=j

[fi(x) + fj(x)] − 1 ≥ 0,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.26)
Here, the number of variables is considered to be larger than the number of
objectives or n > M . We suggest n = 10M . In this problem, there are a total
of M constraints. The Pareto-optimal front is a combination of a straight line
and a hyper-plane. The straight line is the intersection of the first (M − 1)
constraints (with f1 = f2 = · · · = fM−1) and the hyper-plane is represented
by the constraint gM . MOEAs may find difficulty in finding solutions in both
the regions in this problem and also in maintaining a good distribution of
solutions on the hyper-plane. Figures 6.26 and 6.27 show NSGA-II and SPEA2
populations after 500 generations. The Pareto-optimal region (a straight line
and a triangular plane) is also marked in the plots. Although some solutions
on the true Pareto-optimal front are found, there exist many other non-
dominated solutions in the final population. These redundant solutions lie
on the adjoining surfaces to the Pareto-optimal front. Their presence in the
final non-dominated set is difficult to eradicate in real-parameter MOEAs, a
matter which we discuss in Section 6.8.

6.7.9 Test Problem DTLZ9

This final test problem is also created using the constraint surface approach:

6 Scalable Test Problems 137

3

1

2

0.25
0.5

0.75
1 0

0.25
0.5

0.75
1

0

0.25

0.5

0.75

1

f

0

f

f

Figure 6.27. The SPEA2 population of non-dominated solutions on test problem
DTLZ8.

Minimize fj(x) =
∑�j n

M �
i=�(j−1) n

M � x0.1
i , j = 1, 2, . . . , M,

Subject to gj(x) = f2
M (x) + f2

j (x) − 1 ≥ 0, for j = 1, 2, . . . , (M − 1),
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫⎪⎬
⎪⎭

(6.27)
Here too, the number of variables is considered to be larger than the number of
objectives. For this problem, we also suggest n = 10M . The Pareto-optimal
front is a curve with f1 = f2 = · · · = fM−1, similar to that in DTLZ5.
However, the density of solutions gets thinner towards the Pareto-optimal
region. The Pareto-optimal curve lies on the intersection of all (M − 1)
constraints. This feature of this problem may cause MOEAs difficulty in
solving this problem. However, the symmetry of the Pareto-optimal curve
in terms of (M − 1) objectives allows an easier way to illustrate the obtained
solutions. A two-dimensional plot of the Pareto-optimal front with fM and
any other objective function should represent a circular arc of radius one. A
plot with any two objective functions except fM should show a 45o straight
line. Figures 6.28 and 6.29 show NSGA-II and SPEA2 populations after 500
generations on a f3-f1 plot of the 30-variable, three-objective DTLZ9 problem.
The Pareto-optimal circle is also shown in the plots. It is clear that both
algorithms could not cover the entire range of the circle and there exist many
non-dominated solutions away from the Pareto-optimal front.

138 Deb et al.

3

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f

f

Figure 6.28. The NSGA-II population on test problem DTLZ9.

6.8 Redundant Solutions

Many of the above test problems (such as DTLZ6, DTLZ8, and DTLZ9)
introduce a different kind of difficulty to multiobjective real-parameter
optimization techniques. In these problems, the Pareto-optimal front is weakly
non-dominated with the adjoining surfaces (whose intersections give rise to
the Pareto-optimal front). If a good representative set of solutions is not
found on the true Pareto-optimal front, an MOEA which works with the
domination concept can find a set of non-dominated solutions all of which may
not be on the true Pareto-optimal front. Figures 6.30 and 6.31 demonstrate
this matter, for two and three-objective minimization problems, respectively.
With respect to two Pareto-optimal solutions A and B in the figure, any

other solution in the shaded region is non-dominated to both A and B. That
is, if no other Pareto-optimal solutions within the line joining A and B are
found, any solution from the shaded region would be non-dominated with
both A and B and may exist in an MOEA population. In such cases, the
obtained set of solutions may wrongly depict a higher-dimensional surface or
a redundant surface as the obtained Pareto-optimal front. Another study [22]
has also recognized that this feature of problems can cause domination-based
MOEAs difficulty in finding the true Pareto-optimal solutions. It is worth
highlighting here that with the increase in the dimensionality of the objective
space, the probability of occurrence of such redundant solutions is more.
Figures 6.30 and 6.31 illustrate that the region containing such redundant

6 Scalable Test Problems 139

3

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f

f

Figure 6.29. The SPEA2 population on test problem DTLZ9.

solutions would in general be more for a problem having more objectives. We
term this difficulty associated with the dimension of the objective space as
the problem of ‘redundancy’ in the context of multiobjective optimization.
In handling such problems, MOEAs with the newly suggested ε-dominance
concept [23] introduced by the authors may be found useful. A recent study
[24] has demonstrated that the use of ε-dominance concept is one way to
reduce the redundancy problem. However, this is a serious difficulty in the
context to multiobjective optimization and must be addressed further.

6.9 Conclusions

In this study, we have suggested three approaches for systematically designing
scalable test problems for multiobjective optimization. The first approach
simply uses a translated set of single-objective functions. Although the
construction procedure is simple, the resulting Pareto-optimal front may
be difficult to comprehend. The second approach (we called a bottom-up
approach) begins the construction procedure by assuming a mathematical
formulation of the Pareto-optimal front. Such a function is then embedded
in the overall test problem design so that two different types of difficulties
of converging to the Pareto-optimal front and maintaining a diverse set of
solutions can also be introduced. The third approach (we called the constraint
surface approach) begins the construction process by assuming the overall

140 Deb et al.

Pareto−optimal
front

Non−dominated
region to A and B

f

f

A

B

1

2

Figure 6.30. The shaded region is non-dominated with Pareto-optimal solutions A
and B (for two objectives).

f1

f

2f

3

A

B

Pareto−optimal
line

Figure 6.31. The shaded region is non-dominated with Pareto-optimal solutions A
and B (for three objectives).

search space to be a rectangular hyper-box. Thereafter, a number of linear
or non-linear constraint surfaces are added one by one to eliminate some
portion of the original hyper-box. The remaining enclosed region becomes
the feasible search space. A few three-objective test problems are constructed
illustrating the latter two approaches to demonstrate their relative advantages

6 Scalable Test Problems 141

and disadvantages. Finally, a number of test problems have been suggested
and attempted to solve using two popular state-of-the-art MOEAs (NSGA-II
and SPEA2) for their systematic use in practice.

In this study, we have not suggested any explicit constrained test problem,
although problems constructed using the constraint surface approach can be
treated as constrained test problems. However, other difficulties pertinent to
the constrained optimization suggested in a two-objective constrained test
problem design elsewhere [25] can also be used with the proposed procedures
for constrained test problem design.

Acknowledgments

This study originated during the first author’s visit to ETH Zurich. The
authors acknowledge the support from the Swiss National Science Foundation
under the ArOMA project 2100-057156.99/1.

A Appendix: Another Test Problem Using the
Bottom-up Approach: The Comet Problem

To demonstrate the ease of using the bottom-up approach to design test
problems further, we create one more problem which has a comet-like Pareto-
optimal front. Starting from a widely spread region, the Pareto-optimal
front continuously reduces to a thinner region. Finding a wide variety of
solutions in both broad and thin portions of the Pareto-optimal region
simultaneously becomes a challenging task for any multiobjective optimizer,
including classical methods:

Minimize f1(x) = (1 + g(x3))(x3
1x

2
2 − 10x1 − 4x2),

Minimize f2(x) = (1 + g(x3))(x3
1x

2
2 − 10x1 + 4x2),

Minimize f3(x) = 3(1 + g(x3))x2
1,

1 ≤ x1 ≤ 3.5,
−2 ≤ x2 ≤ 2,
g(x3) ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.28)

Here, we have chosen g(x3) = x3 and 0 ≤ x3 ≤ 1. The Pareto-optimal surface
corresponds to x∗

3 = 0 and for −2 ≤ x∗
1
3x∗

2 ≤ 2 with 1 ≤ x∗
1 ≤ 3.5. Figure 6.32

shows the Pareto-optimal front on the x3 = 0 surface. For better illustration
purposes, the figure is plotted with negative fi values. This problem illustrates
that the entire g = g∗ surface need not correspond to the Pareto-optimal front.
Only the region which dominates the rest of the g = g∗ surface belongs to the
Pareto-optimal front.

We have designed this function and the curve function for a special
purpose. Because of the narrow Pareto-optimal region in both problems, we

142 Deb et al.

Pareto−optimal
front

1

3

2

40
−10 0 10 20 30 40

−30

−20

−10

0

30

20−f

−f

−f

10

0

−10

Figure 6.32. The comet problem.

argue that the classical generating methods will require a large computational
overhead in solving the above problems. Figure 6.33 shows the projection of
the Pareto-optimal region in the f1-f2 space of the comet problem. For the use
of the ε-constraint method [6, 26] as a method of generating Pareto-optimal
solutions (usually recommended for its convergence properties), the resulting
single-objective optimization problem, which has to be solved for different
combinations of ε1 and ε2, is as follows:

Minimize f3(x),
subject to f2(x) ≤ ε2,

f1(x) ≤ ε1,
x ∈ D,

⎫⎪⎪⎬
⎪⎪⎭ (6.29)

where D is the feasible decision space. It is well known that the minimum
solution for the above problem for any ε1 and ε2 (≥ 0) is either a Pareto-
optimal solution or is infeasible [26]. The figure illustrates a scenario with
ε2 = −30. It can be seen from the figure that the solution of the above
single-objective optimization problem for ε1 = −15 is not going to produce
any new Pareto-optimal solution other than that obtained for ε1 = −20 (for
example) or for ε1 set to get the Pareto-optimal solution at A. Thus, the above
generating method will resort to solving many redundant single-objective
optimization problems. By calculating the area of the projected Pareto-

6 Scalable Test Problems 143

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��������������������

2

A

1

0

f

−5

−40
0−5

−35

−10−15−20−25−30−35−40

0

−5

−10

−15

−20

−25

−30

0−5−10−15−20−25−30−35−40

−10

−15

−20

−25

−30

−40

−35

−30

−25

−20

−15

−10

−5

0

−40 −35 −30 −25 −20 −15 −10 −5 0

f

−35

−40

Figure 6.33. Classical generating method with the ε-constraint method will
produce redundant single-objective optimization problems.

optimal region, it is estimated that about 88% of single-objective optimization
problems are redundant in the above three-objective optimization problem, if
a uniform set of ε vectors is chosen in the generating method. Compared to
classical generating methods, MOEAs may show superior performance in these
problems in terms of overall computational effort needed in finding multiple
and well distributed Pareto-optimal solutions. This is mainly because of their
implicit parallel processing, which enables them to quickly settle to feasible
regions of interest, and due to their population approach, which allows them
to find a wide variety of solutions simultaneously with the action of a niche-
preserving operator.

References

1. Schaffer, JD Some Experiments in Machine Learning Using Vector Evaluated
Genetic Algorithms. PhD thesis, Nashville, TN: Vanderbilt University, 1984.

2. Kursawe, F A Variant of Evolution Strategies for Vector Optimization. In
Parellel Problem Solving from Nature I (PPSN-I), pp. 193-197, 1990.

3. Fonseca, CM and Fleming, PJ An Overview of Evolutionary Algorithms in
Multi-objective Optimization. Evolutionary Computation Journal, 1995; 3(1):
1-16.

4. Poloni, C, Giurgevich, A, Onesti, L and Pediroda, V Hybridization of a
Multiobjective Genetic Algorithm, a Neural Network and a Classical Optimizer

144 Deb et al.

for Complex Design Problem in Fluid Dynamics. Computer Methods in Applied
Mechanics and Engineering, 2000; 186(2–4): 403-420.

5. Viennet, R Multicriteria Optimization Using a Genetic Algorithm for
Determining the Pareto Set. International Journal of Systems Science, 1996;
27(2): 255-260.

6. Deb, K Multi-objective Optimization Using Evolutionary Algorithms. Chichester,
UK: Wiley, 2001.

7. Van Veldhuizen, D Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD Thesis, Dayton, OH: Air Force Institute
of Technology, 1999. Technical Report No. AFIT/DS/ENG/99-01.

8. Deb, K Multi-objective Genetic Algorithms: Problem Difficulties and
Construction of Test Problems. Evolutionary Computation Journal, 1999; 7(3):
205-230.

9. Zitzler, E, Deb, K and Thiele, L Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation Journal, 2000; 8(2):
125-148.

10. Deb, K, Thiele, L, Laumanns, M and Zitzler, E Scalable Multi-objective
Optimization Test Problems. In Proceedings of the Congress on Evolutionary
Computation (CEC-2002), pp. 825-830, 2002.

11. Coello, CAC, VanVeldhuizen, DA, and Lamont G Evolutionary Algorithms for
Solving Multi-Objective Problems. Boston, MA: Kluwer Academic Publishers,
2002.

12. Bleuler, S, Laumanns, M, Thiele, L and Zitzler, E PISA - A Platform
and Programming Language Independent Interface for Search Algorithms.
In Evolutionary Multi-Criterion Optimization (EMO 2003), Lecture Notes in
Computer Science, Berlin, 2003. Springer.

13. Laumanns, M, Rudolph, G and Schwefel, HP A Spatial Predator-prey Approach
to Multi-objective Optimization: A Preliminary Study. In Proceedings of the
Parallel Problem Solving from Nature, V, pp. 241-249, 1998.

14. Laumanns, M, Thiele, L, Ziztler, E, Welzl, E and Deb, K Running Time Analysis
of Multi-objective Evolutionary Algorithms on a Simple Discrete Optimization
Problem. In Proceedings of the Seventh Conference on Parallel Problem Solving
from Nature (PPSN-VII), pp. 44-53, 2002.

15. Zitzler, E and Thiele, L Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE Transactions
on Evolutionary Computation, 1999; 3(4): 257-271.

16. Deb, K and Jain, S Multi-speed Gearbox Design Using Multi-objective
Evolutionary Algorithms. ASME Transactions on Mechanical Design, 2003;
125(3): 609-619.

17. Laumanns, M, Thiele, L and Zitzler, E Running Time Analysis of Multiobjective
Evolutionary Algorithms on Pseudo-boolean Functions. IEEE Transactions on
Evolutionary Computation, 2004. Accepted for publication.

18. Tanaka, M GA-based Decision Support System for Multi-criteria Optimization.
In Proceedings of the International Conference on Systems, Man and
Cybernetics, Volume 2: pp. 1556-1561, 1995.

19. Tamaki, H Multi-objective Optimization by Genetic Algorithms: A Review. In
Proceedings of the Third IEEE Conference on Evolutionary Computation, pp.
517-522, 1996.

6 Scalable Test Problems 145

20. Knowles, JD and Corne, DW Approximating the Non-dominated Front Using
the Pareto Archived Evolution Strategy. Evolutionary Computation Journal,
2000; 8(2): 149-172.

21. Deb, K, Agrawal, S, Pratap, A and Meyarivan, T A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 2002; 6(2):182-197.

22. Kokolo, I, Kita, H, and Kobayashi, S Failure of Pareto-based Moeas: Does Non-
dominated Really Mean Near to Optimal? In Proceedings of the Congress on
Evolutionary Computation 2001, pp. 957-962, 2001.

23. Laumanns, M, Thiele, L, Deb, K and Zitzler, E Combining Convergence
and Diversity in Evolutionary Multi-objective Optimization. Evolutionary
Computation, 2002; 10(3): 263-282.

24. Deb, K, Mohan, M, and Mishra, S Towards a Quick Computation of Well-
spread Pareto-optimal Solutions. In Proceedings of the Second Evolutionary
Multi-Criterion Optimization (EMO-03) Conference (LNCS 2632), pp. 222-236,
2003.

25. Deb, K, Pratap, A and Meyarivan, T Constrained Test Problems for Multi-
objective Evolutionary Optimization. In Proceedings of the First International
Conference on Evolutionary Multi-Criterion Optimization (EMO-01), pp. 284-
298, 2001.

26. Miettinen, K, Nonlinear Multiobjective Optimization, Boston, Kluwer, 1999.

7

Particle Swarm Inspired Evolutionary
Algorithm (PS-EA) for Multi-Criteria
Optimization Problems

Dipti Srinivasan and Tian Hou Seow

Summary. This chapter presents a synergistic combination of particle swarm
optimization and evolutionary algorithm for optimization problems. The performance
of the hybrid algorithm is bench-marked against conventional genetic algorithm and
particle swarm optimization algorithm. Finally, the hybrid algorithm is illustrated
as a multiobjective optimization algorithm using the Fonseca 2-objective function.

7.1 Introduction

Population-based stochastic search algorithms have been very popular in
recent years in the research arena of computational intelligence. Some of
the well established search algorithms such as Genetic Algorithm (GA)[1-
3], Evolutionary Strategies (ES) [4], Evolutionary Programming (EP) [5] and
Artificial Immune Systems [6], have been successfully implemented to solve a
range of problems from functions optimization to complex real world problems
like scheduling [7-9] and complex network routing problems [3].

In recent years, swarm intelligence has become a research interest to
many research scientists of related fields. The main algorithm for swarm
intelligence is Particle Swarm Optimization (PSO)[10-14], which is inspired
by the paradigm of birds flocking. PSO is successfully implemented in various
optimization problems like weight training in Neural Networks [12] and
functions optimization [10-11,13-14]. PSO is very popular because of the
simplicity in its implementation, as it requires only the tuning of a few
parameters. As the core updating mechanism in the algorithm relies only
on two simple PSO self-updating equations, the process of updating the
individuals per iteration is fast as compared to the computationally expensive
reproduction mechanism using mutation or crossover operations in typical
EA.

The manner in which PSO searches for solutions in the solution space is
also different from a typical EA. An EA iteratively searches for several good
individuals in the population, and tries to make the population emulate the

148 Srinivasan and Seow

best solutions found in that generation through crossover operation, while the
mutation operation tries to introduce diversity to the population. Very often,
premature convergence occurs when all individuals in the solutions become
very similar to each other. This results in the population getting stuck in
local optima, if the initial best individual as found by the EA is very near
to a local optima. In contrast, the PSO maintains a memory to store the
elite individuals of the best global individual (gbest) found, as well as the
best solutions as found by each individual particle (pbest). The population is
not required to contain any of the elite individuals already found, but each
individual in the population tries to emulate the gbest and pbest solutions in
the memory through the updating process governed by PSO weight update
equations. The random element in the PSO equations introduces diversity
around the elite individuals found.

While PSO is a good and fast search algorithm, it has its limitations should
it be used to solve real world problems. PSO relies heavily on the two PSO
equations such that additional domain-specific heuristics related to the real-
world problems cannot be easily incorporated in the algorithm; while in an EA,
heuristics can be easily incorporated in the population generator and mutation
operator to prevent leading the individuals to infeasible solutions. Therefore,
PSO does not perform well in its search in complex multi-constrained solution
spaces, which are the case for many complex real world problems.

To overcome the limitations of PSO and EA, a hybridized evolutionary
algorithm, Particle Swarm Inspired Evolutionary Algorithm (PS-EA), is
proposed to use a synergistic combination of PSO and EA. In the following
sections, a description of the PS-EA algorithm is presented. The algorithm
is benchmarked against Genetic Algorithm (GA) and PSO. It is found
that PS-EA provides an advantage over typical GA and PSO for complex
multi-modal functions like Rosenbrock, Schwefel and Rastrigrin functions. An
application of PS-EA to minimize the classic Fonseca 2-objective functions is
also described to illustrate the feasibility of PS-EA as a multiobjective search
algorithm.

7.2 Particle Swarm Optimization

PSO is an optimization technique developed by Russell C. Eberhart [10-11]and
James Kennedy [10] in 1995, inspired by the paradigm of birds flocking. It is
similar to evolutionary algorithms in the population generation, in that the
initialization is done with a swarm of random particles. For every updating
cycle, each particle is updated such that it tries to emulate the global best
particle, known as gbest, or the particle best, known as pbest. The gbest particle
is the best particle found so far in the swarm of particles, while pbest[k] is the
best solution so far as found by particle k. The number of pbest particles stored
in the memory of the algorithm is equivalent to the number of particles in the
swarm. No selection scheme is incorporated in PSO, since the updating of

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 149

the particles is done by the self-updating equations, and the elite particles
(pbest[] and gbest[]) are stored in the memory, to prevent the degeneration of
the overall fitness of the particle swarm. The self-updating equations of PSO
are as follows:

v[] = v[] + c1.rand().{pbest[]-present[]} + c2.rand().{gbest[]-present[]} (7.1)

present[] = present[]+v[] (7.2)

Where v[] is the particle velocity, present[] is the current particle, rand () is
a random number between 0 and 1, and c1 and c2 are the learning factors.
In an unconstrained solution space, the particles are allowed to take any
values, and Equations 7.1 and 7.2 would work perfectly well. In a semi-
constrained solution space as exemplified in Figure 7.1, there will be upper
and/or lower limits that the value of present[] can have. Defining present
UPPER[] and present LOWER[] as the upper and lower limits solves the
problem of maneuvering the particle to non-feasible solution spaces. In a multi-
constrained solution space as exemplified in Figure 7.2, the PSO equations can
pose a problem as the equations may maneuver the present[] values to the
restricted solution space. To solve this problem in a simple way without

Figure 7.1. A 2-dimensional semi-constrained solution space.

modifying the PSO equations, we can simply issue a huge penalty if present[]
lies in the restricted solution space. However, this is not a good solution, as
it will slow down the rate of convergence. This is because if present[] can be
moved to the restricted region, the probability of present[] to be placed in
the correct position, which is in the feasible region, will be reduced, resulting
in a slower convergence and a poorer performance. Furthermore, it is very
difficult to include any heuristic in the PSO equations, due to the limitation
as posed by the mathematical format of the equations, to avoid present[]

150 Srinivasan and Seow

Figure 7.2. A 2-dimensional multi-constrained solution space.

to be placed in the restricted solution space. To implement heuristics after
the PSO equations have updated the individual defeats the purpose of the
updating equations of PSO. There is a need to provide an extension to the
PSO updating mechanism in order to be able to include the heuristics for the
avoidance of wrong maneuver to the restricted region.

7.3 Particle Swarm Inspired Evolutionary Algorithm
(PS-EA)

PS-EA is a hybridized algorithm combining concepts of PSO and EA. As
discussed in Section 7.2, PS-EA aims to overcome the limitations of PSO
and EA, while building on their strengths. The core intelligence of PS-
EA is incorporated in the Self-Updating Mechanism (SUM) module, which
makes use of the Inheritance Probability Tree (PIT) to perform the updating
operation of each individual in the population. A Dynamic Inheritance
Probability Adjuster (DIPA) is incorporated in SUM to dynamically adjust
the inheritance probabilities in PIT based on the convergence rate or status
of the algorithm in a particular iteration.

7.3.1 Flow of PS-EA

The general flow of PS-EA is shown in Figure 7.3. Although this hybrid
algorithm is similar to population-based stochastic search algorithms in some
ways, it has several unique features. The algorithm has a memory to store
the elite particles or individuals, and there is no reproduction of offspring.

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 151

Figure 7.3. Flow of PS-EA.

All particles in the swarm or population undergo modifications by SUM,
irrespective of whether they are the elite particles or not. It is noted that
popbest is included as one of the elite particles. The popbest particle is the
best particle in the current population. More details will be discussed in the
next sub-section on SUM.

7.3.2 Self-updating Mechanism (SUM)

The SUM functions as an emulator of the PSO self-updating Equations 7.1and 7.2.
The functioning of this mechanism can be described as follows.

152 Srinivasan and Seow

Figure 7.4. The probability inheritance tree (PIT) of SUM.

If we analyze the PSO Equations 7.1and 7.2, we can deduce the following
possible results:

• present[] becomes gbest[]
• present[] becomes pbest[]
• present[] remains as present[]
• present[] is assigned a value near gbest[] or pbest[]

Thus, it is possible to use the operators of EA to emulate the workings
of PSO equations. Replacing the PSO equations, we introduce a probability
inheritance tree (PIT) as illustrated in Figure 7.4.

The end branches at the bottom of the probability inheritance tree show
all the possible values that a parameter value of a particle can take. A
parameter value of the present particle, present[], can inherit the parameter
values from the elite particles or any random neighboring particles, undergo
mutation operation or retain its original value. The mutation operation in
SUM emulates the random element in the PSO equation as in Equation (7.1).
An additional elite particle popbest[], which is the best particle of a current
swarm, is introduced to SUM for faster convergence. To introduce more
diversity in the swarm of particles, we allow present[] to inherit parameter
values of a randomly selected neighbor particle.

The SUM process can be illustrated by considering the updating of the
first parameter of a particle k. When the first parameter value of particle k

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 153

undergoes the SUM, the parameter has the probability P(Elite) to inherit
the value of one of the elite particles, probability P(Remains) to retain its
original value and probability P(Neighbor/Mutation) to inherit the value from
one of its neighboring particles or undergo a mutation operation. If it chooses
to inherit from one of the elite particles, it still has to choose whether it will
inherit from the global best particle gbest, the current population best particle
popbest, or the best particle that particle k has in its memory pbest[k]. The
probabilities that it will choose to inherit from gbest, popbest and pbest[k]
are P(gbest), P(popbest) and P(pbest) respectively. Similarly, if it chooses to
inherit from a neighbor particle or undergoes mutation operation, it will again
need to choose from two options. The probabilities that it will choose to
inherit from a randomly selected neighbor particle in the current population
and undergo mutation operation are P(Neighbor) and P(Mutate) respectively.

7.3.3 Dynamic Inheritance Probability Adjuster (DIPA)

By introducing the probability inheritance tree in the self-updating
mechanism, the total number of parameters to be set increases to nine,
considering the eight inheritance probabilities and the population size. It
presents a challenge for the algorithm designer to determine the correct values
of inheritance probabilities. A DIPA is therefore incorporated in the algorithm
to automatically adjust the inheritance probabilities.

The DIPA obtains feedback regarding the convergence status from the
convergence rate feedback mechanism, in order to detect whether the
algorithm is converging well. This information is obtained based on the
cost of the gbest particle, which is logged in each iteration. For every even-
numbered iteration, the feedback mechanism will calculate the difference
of the costs of the gbest particle in the odd-numbered and even-numbered
iterations. If it is detected that the cost of the gbest particle is not converging
well, this information is fed back to DIPA, which carries out the necessary
adjustment to the inheritance probabilities. It also samples the cost of the gbest
particle in long iteration intervals and checks whether the cost of the gbest
particle has decreased. DIPA does the necessary adjustment based on this
information regarding the convergence status from the feedback mechanism.
Thus, the algorithm designer can set any arbitrary set of the initial inheritance
probabilities, which are dynamically adjusted by DIPA to find the optimum
values.

7.4 Benchmarking Experiments

Five numerical experiments are conducted to compare the performance of
PS-EA with GA and PSO in minimizing five popular test functions.

154 Srinivasan and Seow

Figure 7.5. DIPA flow diagram.

7.4.1 Benchmarking Test Functions

The algorithms were tested on five test functions that are widely used for
benchmarking purposes of optimization algorithms. These functions involve
many local optima and/or saddles in their solution spaces. The amount of local
optima and saddles increases with increasing complexity of the functions, i.e.
with increasing dimension.

Griewank Function

Griewank function (Figure 11.4) can be represented by:

f1 =
1

4000

D∑
d=1

x2
d −

D∏
d=1

cos(
xd√

d
) + 1 (7.3)

The global minimum of f1 is zero, and it occurs when xd = 0 for all d =
1, 2, ...D. It has many widespread local minima. The locations of the minima
are, however, regularly distributed.

Rastrigrin Function

The second test function is the Rastrigrin function (Figure 11.5) given by:

f2 =
D∑

d=1

(x2
d − 10 cos(2πxd) + 10) (7.4)

The global minimum of f2 is zero, and it occurs when xd = 0 for all d =
1, 2, ...D. It is highly multi-modal and, similar to Griewank, it has widespread
local minima which are regularly distributed.

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 155

Figure 7.6. Generalised Griewank function.

Rosenbrock Function

The third test function is Rosenbrock function (Figure 11.6) given by:

f3 =
D−1∑
d=1

(100(xd+1 − x2
d)

2 + (xd − 1)2) (7.5)

The global minimum of f3 is zero, and it occurs when xd = 1 for all d =
1, 2, ...D. It is a classic unimodal optimization problem. The global optimum
is inside a long, narrow, parabolic shaped flat valley, popularly known as
Rosenbrock’s valley. To find the valley is trivial, but to achieve convergence
to the global optimum is difficult task.

Ackley Function

The fourth test function is the Ackley function (Figure 7.9) given by:

f4 = 20 + e − 20e(−0.2
√

1
D

∑D
d=1 x2

d) − e
1
D

∑D
d=1 cos(2πxd) (7.6)

156 Srinivasan and Seow

Figure 7.7. Generalized Rastrigrin function.

The global minimum of f4 is zero, and it occurs when xd = 0 for all d =
1, 2, ...D. It is a highly multi-modal function, similar to the Griewank and
Rastrigrin functions.

Schwefel Function

The fifth test function is the Schwefel function (Figure 7.10) given by

f5 = D × 418.9829 +
D∑

d=1

−xd sin(
√

|xd|) (7.7)

The global minimum of f5 is zero, and it occurs when xd = 420.9867 for all
d = 1, 2, ...D. The Schwefel function is deceptive in that the global minimum
is geometrically distant, over the parameter space, from the next best local
minima. The solution space is wickedly irregular with many local optima. The
search algorithms are potentially prone to convergence in the wrong direction
in the optimization of this function.

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 157

Figure 7.8. Generalized Rosenbrock function.

7.4.2 GA Parameters

The GA scheme used in the comparison experiment is used as suggested in
Digalakis and Margaritis [2]. The scheme is shown in Table 7.1.

Table 7.1. GA scheme.

Crossover probability 0.95
Crossover scheme Single point crossover

Crossover parent selection scheme Random selection (no elitism)
Mutation probability 0.1

Child production scheme A child chromosome is added to the
population from any crossover or
mutation operation

New generation selection scheme Best fixed number of chromosomes
are selected from the “expanded”
population of parent and child
chromosomes for the next GA
operations

158 Srinivasan and Seow

Figure 7.9. Generalized Ackley function.

7.4.3 PSO Scheme

The PSO scheme used in the experiment is used as suggested in Lvbjerg et
al. [14]. The PSO used Equations 7.1 and 7.2, except that 7.1 is modified to
as follows:

v[] =
w x v[]+c1 x rand() x (pbest[]−present[])+c2 x rand() x (gbest[]−present[])

(7.8)
where w is the additional initial weight, which varies from 0.9 to 0.7
linearly with the iterations. The learning factors, c1 and c2, are set to
be 2 and. The upper and lower bounds for v[], (Vmin, Vmax) are set to
be the maximum upper and lower bounds of present[], i.e. (Vmin, Vmax) =
(present MIN and present MAX). If the sum of accelerations would cause
the velocity on that dimension to exceed V max or V min, then the velocity
on that dimension is limited to V max or V min respectively.

7.4.4 PS-EA Parameter settings

Three different sets of initial inheritance probabilities are used to test the
performance of the DIPA module of PS-EA. The purpose of setting the

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 159

Figure 7.10. Generalised Schwefel function.

initial inheritance probabilities differently is to observe whether DIPA works
properly and how a different initial set of inheritance probabilities will affect
the performance of the algorithm. The sets are shown in Table 7.2.

Table 7.2. The three sets of initial inheritance probabilities.

Inheritance probabilities Set 1 Set 2 Set 3
P(Elite) 4/10 1/12 1/3

P(Neighbor/Mutate) 3/10 1/12 1/3
P(Remains) 3/10 10/12 1/3

P(gbest) 0.16 1/144 1/9
P(popbest) 0.12 1/144 1/9

P(pbest) 0.12 10/144 1/9
P(Neighbor) 0.273 1/132 1/6

P(Mutate) 0.027 10/132 1/6

Having the inheritance probabilities to be set fixed as according to Set
2 will result in slow/no convergence or even deterioration in the overall
fitness of the swarm population. Thus, initial inheritance probabilities are
purposely set as Set 2 so as to verify whether DIPA is able to adjust the set

160 Srinivasan and Seow

of inheritance probabilities for effective search. Set 3 is an arbitrary set by
setting all inheritance probabilities to be equal.

7.4.5 Common Experimental Settings

In order to have a consistent set of initial settings for the experiments, the
population size was set as 125. The range of values used for initialization
for these test functions is shown in Table 7.3. The corresponding maximum
generation for each dimension of the test function is shown in Table 7.4.

Table 7.3. Initialization range for the test functions.

Function Initialization range
f1 (−600, 600)n

f2 (−15, 15)n

f3 (−15, 15)n

f4 (−32.768, 32.768)n

f5 (−500, 500)n

Table 7.4. Maximum generation for each dimension of the test function.

Dimension 10 20 30
Maximum Generation 500 750 1000

To compare the performance of these algorithms, tests were conducted
to run each algorithm for various dimensions (10, 20 and 30) for each test
function. A total of 30 runs were carried out for each, and the mean best
and standard deviation (unbiased) for runs were collected for comparison, as
shown later in this chapter

7.5 Simulation Results and Discussion

The results on the best mean values and standard deviations were obtained
and tabulated after performing 30 trial runs of each algorithm for the five
test functions. The best mean values provide a good indication regarding the
convergence of the algorithm, while the standard deviations obtained indicate
the stability of the algorithms. The best results of PS-EA, which are obtained
using Set 2 probabilities, are compared with GA and PSO.

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 161

7.5.1 Optimization of Test Functions with Increasing Function
Dimension

Table 7.5 shows the results of the simulation for the performance of each
algorithm in optimizing the various functions of dimension 10 and maximum
generation of 500 after running 30 trials. From these results, it is evident
that PS-EA outperforms GA and PSO in the optimization of Rastrigrin
and Schwefel functions, which are highly multi-modal. PS-EA has performed
particularly well in the optimization of the Schwefel function, which is wickedly
irregular with many local optima.

Table 7.5. Mean best costs and standard deviation (unbiased) obtained from 30
trials for function dimension 10 and maximum generation of 500.

Function
GA PSO PS-EA

Mean Standard Mean Standard Mean Standard

best cost deviation best cost deviation best cost deviation

f1 0.050228 0.029523 0.079393 0.033451 0.2223 0.0781
f2 1.3928 0.76319 2.6559 1.3896 0.43404 0.2551
f3 46.3184 33.8217 4.3713 2.3811 25.303 29.7964
f4 0.59267 0.22482 9.8499×10−13 9.6202×10−13 0.19209 0.1951
f5 1.9519 1.3044 161.87 144.16 0.32037 1.6185

Table 7.6 shows the results of the simulation for the performance of
each algorithm in optimizing the various functions of dimension 20 and
maximum generation of 750 after running 30 trials. It is observed that PS-EA
outperforms GA and PSO in the optimization of Rastrigrin, Rosenbrock and
Schwefel functions. It is noted for the optimization of Rosenbrock function,
PS-EA has overtaken PSO as the best convergence performer at a higher
dimension of 20 by a small margin. This suggests that PS-EA performs better
when the problem becomes more complex. On Griewank and Ackley functions,
PS-EA remains as the middle performer, with PSO and GA as the best and
worst performers respectively.

Table 7.6. Mean best costs and standard deviation (unbiased) obtained from 30
trials for function dimension 20 and maximum generation of 750.

Function
GA PSO PS-EA

Mean Standard Mean Standard Mean Standard

best cost deviation best cost deviation best cost deviation

f1 1.0139 0.026966 0.030565 0.025419 0.59036 0.2030
f2 6.0309 1.4537 12.059 3.3216 1.8135 0.2551
f3 103.93 29.505 77.382 94.901 72.452 27.3441
f4 0.92413 0.22599 1.1778×10−8 1.5842×10−8 0.32321 0.097353
f5 7.285 2.9971 543.07 360.22 1.4984 0.84612

162 Srinivasan and Seow

Table 7.7 shows the results of the simulation for the performance of each
algorithm in optimizing the various functions of dimension 30 and maximum
generation of 1,000 after running 30 trials. It is observed that PS-EA maintains
itself as the best performer in the optimization of Rastrigrin, Rosenbrock
and Schwefel functions, and a middle-performer in the optimization of
Griewank and Ackley functions. Generally, PS-EA performs particularly well
on functions of high dimension and complexity.

Table 7.7. Mean best costs and standard deviation (unbiased) obtained from 30
trials for function dimension 30 and maximum generation of 1,000.

Function
GA PSO PS-EA

Mean Standard Mean Standard Mean Standard

best cost deviation best cost deviation best cost deviation

f1 1.2342 0.11045 0.011151 0.014209 0.8211 0.1394
f2 10.4388 2.6386 32.476 6.9521 3.0527 0.9985
f3 166.283 59.5102 402.54 633.65 98.407 35.5791
f4 1.0989 0.24956 1.4917×10−6 1.8612×10−6 0.3771 0.098762
f5 13.5346 4.9534 990.77 581.14 3.272 1.6185

PS-EA has experimentally proven to be a good optimization algorithm for
multi-model test functions of Rastrigrin and Schwefel, as well as the unimodal
function of Rosenbrock. In the optimization of Griewank and Ackley functions,
it middle-performs between GA and PSO. It is also observed that PS-EA
performs exceedingly well when the function dimension increases, as shown in
its optimization of Rastrigrin, Rosenbrock and Schwefel functions for function
dimension of 30 in Table 7.7, where the results obtained by PS-EA are much
better than GA and PSO.

7.5.2 Multiobjective Function Optimization

PS-EA can be applied to solve multiobjective problems. The results on
Fonseca 2-objective minimization problem, defined as follows, are shown in
this section.

Minimize:

f1(x1, x2, ...x8) = 1 − exp(−
8∑

i=1

(xi − 1√
8
)2) (7.9)

f1(x1, x2, ...x8) = 1 − exp(−
8∑

i=1

(xi +
1√
8
)2) (7.10)

where −2 ≤ xi ≤ 2,∀i = 1, 2, ...8.
The true Pareto-optimal set for this problem is x1 = x2 = ... = x8,− 1√

8
≤

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 163

Figure 7.11. The flow of multiobjective PS-EA (MOPS-EA).

xi ≤ 1√
8
, i = 1, 2, ..., 8. To apply PS-EA in this multiobjective problem, the

algorithm is modified as in Figure 7.11.
With MOPS-EA as modified from PS-EA, simulation tests were conducted

to solve the Fonseca’s problem. A sample objective curve, as shown in Figure
7.12 is plotted at the 100th generation, showing the objective positions of
pbest particles.

It can be seen that the final solution of pbest particles (as denoted by
+) converges closely to the true Pareto front. This application establishes
the applicability of this algorithm for searching in multi-modal as well as
multiobjective problem domains.

7.6 Conclusions

This chapter describes Particle Swarm Inspired Evolutionary Algorithm (PS-
EA), which is a hybridized Evolutionary Algorithm (EA) that combines the
concepts of EA and Particle Swarm Theory. The Self-updating Mechanism
(SUM) developed in this chapter overcomes the inherent limitations of PSO
and promises drastic performance improvement for multi-modal functions.
Another important element of this hybrid algorithm is the Dynamic
Inheritance Probability Adjuster (DIPA), an autonomous module which
dynamically adjusts the inheritance probabilities of the probability inheritance
tree based on the convergence rate of the algorithm. DIPA greatly reduces
the need for the algorithm designers to experimentally determine the best
set of parameter values for a given optimization task. A comparison of
results between PS-EA, and previously reported best methods such as
Genetic Algorithm (GA) and PSO, demonstrates that PS-EA outperforms

164 Srinivasan and Seow

Figure 7.12. Objective curve showing the true Pareto front and the found Pareto
optimal set (+) at the 100th generation of PS-EA.

these methods on challenging benchmark functions in terms of both its
convergence and stability. These favorable results render PS-EA an attractive
candidate algorithm to solve difficult real-world optimization problems of high
dimensions.

References

1. Hondroudakis, A, Malard, J and Wilson, GV, An Introduction to Genetic
Algorithms Using RPL2: The EPIC Version, Computer Based Learning Unit,
University of Leeds, 1995.

2. Digalakis, JG, and Margaritis, KG, An Experimental Study of Benchmarking
Functions for Genetic Algorithms, 2000 IEEE International Conference on
Systems, Man, and Cybernetics, Nashville, vol. 5, pp. 3810 -3815, 2000.

3. Sinclair, MC, The application of a genetic algorithm to trunk network routing
table optimization,” 10th.Performance Engineering in Telecommunications
Network Teletraffic Symposium, pp. 2/1 -2/6, 1993.

7 Particle Swarm Inspired Evolutionary Algorithm (PS-EA) 165

4. Greenwood, GW, Lang, C, and Hurley, S, Scheduling Tasks in Real-time
Systems Using Evolutionary Strategies, Proceedings of the Third Workshop on
Parallel and Distributed Real-Time Systems, pp. 195 -196, 1995.

5. Fogel, D, and Sebald, AV, Use of Evolutionary Programming in the Design Of
Neural Networks For Artifact Detection,” Proceedings of the Twelfth Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 1408 -1409, 1990.

6. Meshref, H, and VanLandingham, H, Artificial Immune Systems: Application
to Autonomous Agents, 2000 IEEE International Conference on Systems, Man,
and Cybernetics, Nashville, Vol. 1, pp. 61 -66, 2000.

7. Di Stefano, C and Tettamanzi, AGB, An Evolutionary Algorithm for Solving
the School Time-Tabling Problem, Proceedings of Applications of Evolutionary
Computing, pp. 452-462, 2001.

8. Srinivasan, D, Seow, TH, and Xu, JX, Automated Time Table Generation
Using Multiple Context for University Modules,Proceedings of IEEE Congress
of Evolutionary Computation, vol. 2, pp. 1751-1756, 2002.

9. Srinivasan, D, Seow, TH, and Xu, JX, Constraint-Based University Time-
Tabling Using Evolutionary Algorithm,Proceedings of the 4th Asia-Pacific
Conference on Simulated Evolution And Learning, Singapore, vol. 2, pp. 252-
256, 2002.

10. Kennedy, J, Eberhart, RC, and Shi, Y, Swarm Intelligence, San Francisco,
Morgan Kaufman Publishers, 2002.

11. Eberhart, RC, and Shi, Y, Particle Swarm Optimization: Developments,
Applications and Resources, Proceedings of the 2001 Congress on Evolutionary
Computation, Seoul, vol. 1, pp. 81-86, 2001.

12. Zhang, C, Shao, H, and Li, Y, Particle Swarm Optimisation for Evolving
Artificial Neural Network, 2000 IEEE International Conference on Systems,
Man, and Cybernetics, vol. 4, pp. 2487-2490 ,2000.

13. Angeline, PJ, Using Selection to Improve Particle Swarm Optimization,
The 1998 IEEE International Conference on IEEE World Congress on
Computational Intelligence Evolutionary Computation Proceedings, Alaska, pp.
84 -89, 1998.

14. Lvbjerg, M, Rasmussen, T, and Krink, T, Hybrid Particle Swarm Optimiser
with Breeding and Subpopulations, Proceedings of the Genetic and Evolutionary
Computation Conference, 2001.

15. Tan, KC, Lee, TH, and Khor, EF, Evolutionary Algorithms with Goal and
Priority Information for Multiobjective Optimzation,” In Proceedings of the
Congress in Evolutionary Computation, Washington, DC, vol. 1, pp. 106-113,
1999.

8

Evolving Continuous Pareto Regions

D. Dumitrescu, Crina Groşan, and Mihai Oltean

Summary. In this chapter we propose a new evolutionary elitist approach
combining a non-standard solution representation and an evolutionary optimization
technique. The proposed method permits detection of continuous decision regions.
In our approach an individual (a solution) is either a closed interval or a point.
The individuals in the final population give a realistic representation of the
Pareto-optimal set. Each solution in this population corresponds to a decision
region of the Pareto-optimal set. The proposed technique is an elitist one. It uses
a unique population. The current population contains non-dominated solutions
already computed.

8.1 Introduction

Several evolutionary algorithms for solving multiobjective optimization
problems have been proposed [1-14]; see also the reviews [15-17].

Usually Pareto evolutionary algorithms aim to give a discrete picture of the
Pareto-optimal set (and of the corresponding Pareto frontier), but generally
the Pareto-optimal set is a continuous region in the search space. Therefore a
continuous region is represented by a discrete set. When continuous decision
regions are represented by discrete solutions there is loss of information.
Moreover reconstructing a continuous Pareto set from a discrete picture is
not an easy task [16].

In Dumitrescu et al. [4] an evolutionary algorithm for detecting continuous
Pareto-optimal sets has been proposed. The method proposed there uses a
Genetic Chromodynamics evolutionary technique [18] to maintain population
diversity.

In this chapter a new evolutionary approach, combining a non-standard
solution representation and a Genetic Chromodynamics optimization
technique, is considered. Within the proposed approach continuous decision
regions may be detected. A solution (individual) is either a closed interval or
a point (considered as a degenerated interval). Mutation is the unique search
operator considered.

168 Dumitrescu et al.

The mutation operator idea is to expand each individual towards the left
and towards the right. In this respect both interval extremities are mutated.
The left extremity is mutated towards the left and the right extremity is
mutated towards the right.

To reduce population size and to obtain the correct number of solutions
within the final population the merging operator introduced in the context of
Genetic Chromodynamics is used.

The solutions in the final population supply a realistic representation of the
Pareto-optimal set. Each solution in this population corresponds to a decision
region (a subset of Pareto set). A decision region will also be called a Pareto
region.

The solutions are detected in two stages. In the first stage a Genetic
Chromodynamics technique is used to detect all (local and global) Pareto
solutions. In the second stage the solutions are refined. During the fine tuning
the sub-optimal regions are removed.

The evolutionary multiobjective technique proposed in this chapter is
called the Pareto Evolutionary Continuous Regions(PECR) algorithm.

8.2 Problem statement

Let Ω be the search space. Consider n objective functions f1, f2, . . . fn,
fi : Ω → �, where Ω ⊂ �. Consider the multiobjective optimization problem:{

optimize f(x) = (f1(x), ..., fn(x))
subject to x ∈ Ω.

The key concept in determining solutions of multiobjective optimization
problems is that of Pareto optimality. In what follows we recall some basic
definitions.

Definition 1. (Pareto dominance)
Consider a maximization problem. Let x, y be two decision vectors (solutions)
from Ω.

Solution x dominate y (also written as x � y) if and only if the following
conditions are fulfilled:

(1) fi(x) ≥ fi(y), ∀i = 1, 2,. . . , n,
(2) ∃j ∈ {1, 2, . . . , n}: fj(x) > fj(y).

Definition 2.
Let S ⊆ Ω be a subset of the search space. All solutions, which are not
dominated by any vector of S, are called non-dominated with respect to S.

Definition 3.
Solutions that are non-dominated with respect to S, S ⊂ Ω, are called local
Pareto solutions or local Pareto regions.

8 Evolving Continuous Pareto Regions 169

Definition 4.
Solutions that are non-dominated with respect to the entire search space Ω
are called Pareto-optimal solutions.

Let us note that when the search space is a subset of �, then the Pareto-
optimal set may be represented as:

(1) a set of points;
(2) a set of disjoint intervals;
(3) a set of disjoint intervals and a set of points.

Remark
In each of the cases (1), (2) and (3) a point or an interval represents a Pareto
region.

Evolutionary multiobjective optimization algorithms are intended for
supplying a discrete picture of the Pareto-optimal set and of the Pareto
frontier. But the Pareto set is usually a union of continuous set. When
continuous decision regions are represented by discrete solutions there is some
information loss. The resulting sets are but a discrete representation of their
continuous counterparts.

Methods for finding the Pareto-optimal set and Pareto-optimal front using
discrete solutions are computationally very difficult. However, the results may
be accepted as the best possible at a given computational resolution.

The evolutionary method proposed in this chapter directly supply the true
(i.e. possibly continuous) Pareto-optimal set.

8.3 Solution Representation and Domination

In this chapter we consider solutions are represented as intervals in the search
space Ω.

Each interval-solution k is encoded by an interval [xk, yk] ⊂ �.
Degenerated intervals are allowed. Within degenerate case (yk = xk) the
solution is a point.

In order to deal with the proposed representation a new domination
concept is needed. This domination concept is given by the next definition.

Definition 5.
An interval-solution [x, y] is said to be interval-nondominated if and only if
all points of that interval [x, y] are non-dominated point-wise solutions. An
interval-nondominated solution will be called a Pareto-interval.

Remarks

1. If x = y this concept reduced towards the ordinary non-domination notion.
2. If no ambiguity arises we will use non-dominated instead of interval-

nondominated.

170 Dumitrescu et al.

8.4 ε−dominance

A true Pareto set may comprise well-separated points which do not dominate
each other. However, due to the representation capabilities these points could
be represented by different numbers. For instance the number x = 0.17 may
be represented either as x′ = 0.1 or as x” = 0.2, for a particular parameter
representation setting. Let us consider that x represent a non-dominated
solution. It is possible that x′ or x” are dominated solutions.

Therefore representation limitations may induce a falsification of
domination relationship. As a consequence some points belonging to the true
Pareto set could be lost during the search process based on domination.

A procedure for avoiding the loss of some solutions is highly needed. Such
a procedure may be based on a new concept of dominance that takes into
account the representation precision.

We propose to use the notion of ε-dominance.

Definition 6. (ε-dominance)
Consider a maximization problem. Let x, y be two decision vectors (solutions)
from Ω.

Solution x ε-dominate y if and only if the following conditions are fulfilled:

(i) f1(x) ≥ fi(y), ∀ i = 1, 2,. . . , n,
(2) ∃j ∈ {1, 2, . . . , n}: fj(x) > fj(y) + ε.

The concept of ε-dominance will be used for the fine tuning process.

8.5 Mutation

Problem solutions are detected in two stages. In the first stage a Genetic
Chromodynamics technique is used to detect all (global and local) solutions.
This represents the evolution stage.

In the second stage (fine tuning or refinement stage) solutions that have
been detected in the first stage are refined. By using the refinement procedure
sub-optimal Pareto regions are removed from the final population.

Most of the multiobjective optimization techniques based on Pareto
ranking use a secondary population (an archive) denoted Psecond for storing
nondominated individuals. Archive members may be used to guide the search
process. As dimension of secondary population may dramatically increase
several mechanisms for reducing archive size have been proposed. In Knowles
and Corne [10] and Schaffer [11] a population decreasing technique based on a
clustering procedure is considered. We may observe that preserving only one
individual from each cluster implies a loss of information.

In our approach the population size does not increase during the search
process even if the number of Pareto-optimal points increase. The population
size is kept low due to the special representation we consider.

8 Evolving Continuous Pareto Regions 171

When a new non-dominated point is found it replaces another point
solution in the population or it is used for building a new interval solution
with another point in the population. This does not cause any information
loss concerning the Pareto-optimal set during the search process.

The algorithm starts with a population of degenerated intervals (i.e. a
population of points). The unique variation operator is mutation. It consists
of normal perturbation of interval extremities. Mutation can also be applied to
point-solutions (considered as degenerated intervals). Each interval extremity
is mutated. The left extremity of an interval is always mutated towards the
left and the right interval extremity is mutated only towards the right.

For mutation two cases are to be considered.

1. Degenerated interval.
First, the individual is mutated towards the left. The obtained point
represents the offspring. Parent and offspring compete for survival.
If the offspring dominates its parent it will be added to the new population.
If the parent dominates the offspring then the parent is mutated towards
the right. The best, in the sense of domination, enter the new population.
If parent and offspring are not comparable with respect to domination
relation then the two points define an interval solution. The new interval
solution is included in the new generation. The point solution representing
the parent is discarded.

2. Non-degenerated interval.
(a)First, the left extremity of the interval [u, v] is mutated towards the left.

A point-offspring u′ is obtained. Consider the case when the offspring
u′ and the parent u do not dominate each other. In this situation a new
interval solution [u′, v] is generated. The new solution has the offspring
u′ as its left extremity and v as its right extremity.
If the offspring u’ dominates the parent u, then the interval solution
[u, v] enters the new population.

(b) A similar mutation procedure is applied to the right interval extremity
of the solution ([u, v] or [u′, v]) previously obtained.

8.6 Population Model

For each generation every individual in the current population is mutated.
Parents and offspring directly compete for survival. The domination relation
guides this competition.

For detecting the correct number of Pareto-optimal regions it is necessary
to have, in the final population, only one solution per Pareto-optimal region.

In this chapter we consider the merging operator of Genetic Chromodynamics
for implementing the population decreasing mechanism. Very close solutions
are fused and population size decreases accordingly.

In the framework of this chapter the merging operator is described as
bellow:

172 Dumitrescu et al.

• If two interval solutions overlap the shortest interval solution is discarded.
• Degenerated interval-solutions included in non-degenerated interval-

solutions are removed too;
• If two degenerated solutions are closer than a fixed threshold r then the

worst solution is discarded.

The merging operator is applied each time a new individual enters the
population.

The method allows a natural termination condition. The algorithm stops
when there is no improvement of the solutions for a fixed number of
generations. Each solution in the last population supplies a Pareto-optimal
region contributing to the picture of the Pareto-optimal set.

8.6.1 Fine Tuning

For this reason final solutions may consist from inhomogeneous sub-solutions
representing global and local optima. Some sub-solutions may correspond to
optimal Pareto regions.

It is desirable to eliminate sub-solutions (segments) corresponding to local
optima. This elimination may be considered as a fine tuning process. Solutions
closer to the true Pareto set are expected to be obtained. Other sub-solutions
may represent to local Pareto regions.

The idea of fine-tuning is to isolate and discard from each final solution
sub-intervals representing local optima. For accomplishing the fine tuning task
each final solution is discretized.

Let D be the set of points obtained by discretizing the solution [x, y].
Domination of each member of D is tested against the other points from D.
The proposed model is based on local domination (only pairs of individuals
are compared with respect to domination relation). The discretized solutions
are compare by using the ε-dominance concept.

During the fine tuning stage sub-optimal solutions (regions) are removed.
For this aim each continuous Pareto region is transformed into a discrete set.
Discretized version is obtained considering points within each interval solution
at a fixed step size.

Let us denote by ss the step size. Consider an interval solution [x, y]. From
this solution consider the points xj fulfilling the conditions:

(1)xj = x + j·ss, j = 0, 1, . . .
(2)xj ≤ y.

These points represent the discretized version (denoted D) of the interval
solution [x, y].

Each point xj within the interval solutions is checked. If a point from
the discretized set D dominates the point xj then xj is removed from the
Pareto interval [x, y] together with a small neighboring region. The size of the
removed region is equal with ss.

8 Evolving Continuous Pareto Regions 173

The intervals obtained after this stage are considered as the true Pareto
sets.

8.7 Algorithm Complexity

The complexity of the proposed algorithm is low. Let m be the number of
objectives and N the population size. The first stage requires

K1 = O(m · N · IterationNumber) operations.

Consider Imaxas the longest interval solution in the population. Consider
a function

F : �×� → N .

Admit that F fulfills the following conditions:

(1)F is a linear function,
(2)F ([a, a]) = 1,

for each a ∈ (-∞, ∞).

Second stage (fine tuning) requires

K2 = O(N2 · F (Imax)2) operations.

8.8 PECR Algorithm

Using the previous considerations we are ready to design a new multiobjective
optimization algorithm.

The evolution stage of the PECR algorithm is outlined as below:

generates an initial population P(0). {all intervals are degenerated i.e. xk = yk}
t = 0;
while not (Stop Condition) do
begin

for each individual k in P(t) do
begin

Left offspr = MutateTowardsLeft(xk);
if dominate(Left offspr, xk)
then

if xk = yk

then xk = yk = Left offspr;
else

if nondominated(Left offspr, xk)
then xk= Left offspr;

Right offspr = MutateTowardsRight(yk);

174 Dumitrescu et al.

if dominate(Right offspr, yk)
then

if xk = yk

then xk = yk = Right offspr;
else

if nondominated(Right offspr, yk)
then yk= Right offspr;

endif
endfor
Remove Overlaping Intervals;
Remove Similar Degenerated Intervals;
t = t + 1

endwhile

Fine tuning part of PECR algorithm is obvious.

8.9 Numerical Experiments

Several numerical experiments using PECR algorithm have been performed.
For all examples the detected solutions gave correct representations of Pareto
set with an acceptable accuracy degree. Some particular examples are given
below.

8.9.1 Example 1

Consider the functions f1, f2 : [−9, 9] → � defined as

f1(x) = x2,
f2(x) = 9 − √

81 − x2,

and the multiobjective optimization problem:⎧⎨
⎩

minimize f(x) = (f1(x), f2(x))
subject to
x ∈ [− 9, 9].

The initial population is depicted in Figures 8.1 and 8.2.
Consider the standard deviation parameter value

σ = 0.1.

In this case population obtained after 10 generations is depicted in Figures
8.3 and 8.4. The final population, obtained after 70 generations, is depicted
in Figures 8.5 and 8.6.

The final population obtained at convergence after 70 generations contains
only one individual represented as degenerated interval (i.e. a point)

8 Evolving Continuous Pareto Regions 175

Figure 8.1. Initial population represented within solution space.

Figure 8.2. Initial population represented within objective space.

176 Dumitrescu et al.

Figure 8.3. Population obtained after 10 generations represented within solution
space.

Figure 8.4. Population obtained after 10 generations represented within objective
space.

8 Evolving Continuous Pareto Regions 177

Figure 8.5. Final population obtained after 70 generations represented within
solution space.

Figure 8.6. Final population obtained after 70 generations represented within
objective space.

178 Dumitrescu et al.

s= −0.001.

Therefore, the detected Pareto-optimal set consists from a single point:

Pdetect = {−0.001}.

We may remark that the detected Pareto set represents a good estimation
of the correct Pareto-optimal set

Pc = {0}.

Accuracy of this estimation can be easily improved by using smaller values
of the parameter σ (standard deviation). In this case a larger number of
generations are needed for convergence. For instance, if we put

σ = 0.01,

the obtained solution is

s= 0.0008.

8.9.2 Example 2

Consider the functions f1, f2 : [−4, 6] → � defined as

f1(x) = x2,

f2(x) = (x − 2)2.

Consider the multiobjective optimization problem:{
minimize f(x) = (f1(x), f2(x))
subject to x ∈ [−4, 6] .

The initial population represented within solution space is depicted in
Figure 8.7. The initial population represented within objective space is
depicted in Figure 8.8.

For the value
σ = 0.1

of the standard deviation parameter solutions obtained after 5 generations are
depicted in Figures 8.9 and 8.10.

The final population, obtained after 35 generations, is depicted in Figures
8.11 and 8.12.

The final population contains only one individual. This individual is:

s = [0.01, 1.98],

and represents a continuous Pareto optimal solution.
The obtained solution accuracy may be increased, if necessary, by

decreasing the parameter standard deviation of normal perturbation. Of
course, the number of iterations needed for convergence increases this case.

8 Evolving Continuous Pareto Regions 179

Figure 8.7. Initial population represented within solution space.

Figure 8.8. Initial population represented within objective space.

180 Dumitrescu et al.

Figure 8.9. Population obtained after 5 generations represented within solution
space.

Figure 8.10. Population obtained after 5 generations represented within objective
space.

8 Evolving Continuous Pareto Regions 181

Figure 8.11. Final population obtained after 35 generations represented within
solution space.

Figure 8.12. Final population obtained after 35 generations represented within
objective space.

182 Dumitrescu et al.

8.9.3 Example 3

Consider the functions f1, f2 : [−10, 13] → � defined as

f1(x) = sin(x),

f2(x) = sin(x + 0.7).

Consider the multiobjective optimization problem:{
minimize f(x) = (f1(x), f2(x))
subject to x ∈ [−10, 13]

The initial population is depicted in Figures 8.13 and 8.14.
Consider the value

σ = 0.1

for the standard deviation of mutation operator. Solutions obtained after 3
generations are depicted in Figures 8.15 and 8.16.

The final population, obtained after 42 generations, is depicted in Figures
8.17 and 8.18.

The final population after the refinement stage is depicted in Figures 8.19
and 8.20.

Solutions in the final population are:

s1 = [−8.47,−7.86],
s2 = [−2.26,−1.56],

s3 = [4.01, 4.69],
s4 = [10.29, 10.99].

8.9.4 Example 4

Consider the functions f1, f2 : [−10, 20] → � defined as

f1(x) = sin(x),

f2(x) = 2 · sin(x) + 1.

Consider the multiobjective optimization problem:{
minimize f(x) = (f1(x), f2(x))
subject to x ∈ [−10, 20]

The initial population is depicted in Figures 8.21 and 8.22.
For the value

σ = 0.1

solutions obtained after 14 generations are depicted in Figures 8.23 and 8.24.
The final population, obtained after 70 generations, is depicted in Figures

8.25 and 8.26.

8 Evolving Continuous Pareto Regions 183

Figure 8.13. Initial population represented within solution space.

Figure 8.14. Initial population represented within objective space.

184 Dumitrescu et al.

Figure 8.15. Population obtained after 3 generations represented within solution
space.

Figure 8.16. Population obtained after 3 generations represented within objective
space.

8 Evolving Continuous Pareto Regions 185

Figure 8.17. Population obtained at convergence (after 42 generations) represented
within solution space.

Figure 8.18. Population obtained at convergence (after 42 generations) represented
within objective space.

186 Dumitrescu et al.

Figure 8.19. Final population obtained after fine tuning stage represented within
solution space.

Figure 8.20. Final population obtained after fine tuning stage represented within
objective space.

8 Evolving Continuous Pareto Regions 187

Figure 8.21. Initial population represented within solution space.

Figure 8.22. Initial population represented within objective space.

188 Dumitrescu et al.

Figure 8.23. Population obtained after 14 generations represented within solution
space.

Figure 8.24. Population obtained after 14 generations represented within objective
space.

8 Evolving Continuous Pareto Regions 189

Figure 8.25. Final population obtained after 70 generations represented within
solution space.

Figure 8.26. Final population obtained after 70 generations represented within
objective space.

190 Dumitrescu et al.

8.9.5 Example 5

Consider the functions f1, f2 : [0, 24] → � defined as

f1(x) = sin(x),

f2(x) =⎧⎪⎪⎨
⎪⎪⎩

−4·x
π + 8 · k, 2 · k · π ≤ x < 2 · k · π + π

2 ,
4·x
π − 4 · (2 · k + 1), 2 · k · π + π

2 ≤ x < (2 · k + 1) · π,
−2·x

π + 2 · (2 · k + 1), (2 · k + 1) · π ≤ x < (2 · k + 1) · π + 3·π
2 ,

2·x
π − 4 · (k + 1), 2 · k · π + 3·π

2 ≤ x < 2 · (k + 1) · π.

k ∈ Z+.

Consider the multiobjective optimization problem:{
minimize f(x) = (f1(x), f2(x))
subject to x ∈ [0, 24]

The initial population is depicted in Figure 8.27 and 8.28.
For the value

σ = 0.1

solutions obtained after 4 generations are depicted in Figures 8.29 and 8.30.
The final population, obtained after 60 generations, is depicted in Figures

8.31 and 8.32.
The final population after the refinement stage is depicted in Figures 8.33

and 8.34.

8.10 Comparison of Several Multiobjective Evolutionary
Algorithms

Here we show a comparison of various evolutionary algorithms for
multiobjective optimization using five test functions. The functions were
provided in the previous section.

We compared four algorithms on each test function.

NSGA II: The Nondominated Sorting Genetic Algorithm II [3]

PAES: The Pareto Archived Evolution Strategy [9, 10]

SPEA: The Strength Pareto Evolutionary Algorithm [13]

PECR: The Pareto Evolutionary Continuous Regions

The multiobjective EAs were executed once on each test problem. In what
follows we provide parameters used for each algorithm.

8 Evolving Continuous Pareto Regions 191

Figure 8.27. Initial population represented within solution space.

Figure 8.28. Initial population represented within objective space.

192 Dumitrescu et al.

Figure 8.29. Population obtained after 4 generations represented within solution
space.

Figure 8.30. Population obtained after 4 generations represented within objective
space.

8 Evolving Continuous Pareto Regions 193

Figure 8.31. Population obtained at convergence (after 60 generations) represented
within solution space.

Figure 8.32. Population obtained at convergence (after 60 generations) represented
within objective space.

194 Dumitrescu et al.

Figure 8.33. Final population obtained after fine tuning stage represented within
solution space.

Figure 8.34. Final population obtained after fine tuning stage represented within
objective space.

8 Evolving Continuous Pareto Regions 195

NSGA II:
Individual representation: binary encoding
Selection strategy: binary tournament
Chromosome length: 10
Crossover type: 1 cut-point
Crossover probability: 0.8
Mutation probability: 0.1
Generations: 250
Population size: 100

SPEA
Individual representation: binary encoding
Selection strategy: binary tournament
Chromosome length: 10
Crossover type: 1 cut-point
Mutation probability: 0.1
Generations: 250
Population size: 100

PAES
Individual representation: binary encoding
Chromosome length: 10
Division depth: 6
Mutation probability: 0.2
Number of function evaluations: 25000
Archived size: 100

PECR
Individual representation: Real
Population size: 40
Sigma: 0.03
Similarity distance: 0.1
ε−dominance value: 0.003

The results of the comparison are depicted in Figures 8.35, 8.36, 8.37, 8.38,
8.39. Solutions obtained by the first three algorithms are drawn as vertical
segments in order to obtain a true representation.

8.11 Concluding Remarks and Further Research

A new evolutionary technique for solving multiobjective optimization
problems involving one variable functions is proposed. A new solution
representation is used. Standard search (variation) operators are modified
accordingly. The proposed evolutionary multiobjective optimization technique

196 Dumitrescu et al.

Figure 8.35. Test function 1.

Figure 8.36. Test function 2.

uses only one population. This population consists of non-dominated solutions
already computed.

All known standard or recent multiobjective optimization techniques
supply a discrete picture of Pareto-optimal solutions and of the Pareto frontier.
But the Pareto optimal set is usually non-discrete. Finding the Pareto-optimal
set and Pareto-optimal frontiers using a discrete representation is not a very
easy task computationally (see [16]).

8 Evolving Continuous Pareto Regions 197

Figure 8.37. Test function 3.

Figure 8.38. Test function 4.

The evolutionary technique proposed in this chapter supplies directly a
continuous picture of the Pareto-optimal set and of the Pareto frontier. This
makes our approach very appealing for solving problems where very accurate
solutions detection is needed.

Another advantage is that the PECR technique has a natural termination
condition derived from the nature of the evolutionary method used for

198 Dumitrescu et al.

Figure 8.39. Test function 5.

preserving population diversity. Experimental results suggest that the PECR
algorithm supplies correct solutions after few generations.

Further research will focus on the possibilities to extend the proposed
technique to deal with multidimensional domains. Another research direction
is to exploit the solution representation as intervals for solving inequality
systems and other problems for which this representation seems to be natural.

References

1. Corne, DW and Knowles, JD., The Pareto-Envelope Based Selection Algorithm
for Multiobjective Optimization. In Proceedings of the Sixth International
Conference on Parallel Problem Solving from Nature, Springer-Verlag, pp. 839-
848, Berlin, 2000

2. Deb, K, (1999) Multiobjective Evolutionary Algorithms: Problem Difficulties
and Construction of Test Problems. Evolutionary Computation 1999; 7: 205-
230.

3. Deb, K, Agrawal, S, Pratap, A and Meyarivan, T, A Fast Elitist Non -
dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA
II. In Schoenauer, M, et al. (eds), Parallel Problem Solving From Nature - PPSN
VI, Springer-Verlag, pp. 849-858, Berlin, 2000.

4. Dumitrescu, D, Grosan, C and Oltean M, An Evolutionary Algorithm for
Detecting Continuous Pareto Regions. Studia Babes-Bolyai University, Ser.
Informatica, 2000; 45: 51-68.

5. Goldberg, DE, Evolutionary Algorithms in Search, Optimization and Machine
Learning. Reading, Addison Wesley, 1989.

8 Evolving Continuous Pareto Regions 199

6. Grosan, C, A New Evolutionary Technique for Detecting Pareto Continuos
Regions, Proceedings of Genetic and Evolutionary Computation Conference
(GECCO-2003), Workshop Program, Barry, A (ed), pp. 304 -307, 2003.

7. Horn, J and Nafpliotis, N, Multiobjective Optimization Using Niched
Pareto Evolutionary Algorithms. IlliGAL Report 93005, Illinois Evolutionary
Algorithms Laboratory, University of Illinois, Urbana Champaign, 1993.

8. Horn, J, Nafpliotis, N and Goldberg, DE, A Niche Pareto Evolutionary
Algorithm for Multiobjective Optimization. In Proc. 1st IEEE Conf.
Evolutionary Computation, Piscataway, 1: pp. 82-87, 1994.

9. Knowles, JD and Corne, DW, Approximating the Nondominated Front Using
the Pareto Archived Evolution Strategies. Evolutionary Computation 2000; 8(2):
149-172.

10. Knowles, JD and Corne, DW, The Pareto Archived Evolution Strategy: A New
Baseline Algorithm for Pareto Multiobjective Optimization. In Congress on
Evolutionary Computation (CEC 99), Piscataway, NJ, 1: pp. 98-105, 1999.

11. Schaffer, JD, Multiple Objective Optimization with Vector Evaluated
Evolutionary Algorithms. Evolutionary Algorithms and Their Applications, In
Grefenstette, JJ, (ed.), pp. 93-100, Hillsdale, NJ, Erlbaum, 1985.

12. Srinivas, N and Deb, K, Multiobjective Function Optimization Using
Nondominated Sorting Evolutionary Algorithms. Evolutionary Computing
1994; 2: 221-248.

13. Zitzler, E, Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. Doctoral Dissertation, Swiss Federal Institute of Technology
Zurich, 1999.

14. Zitzler, E, Laumanns, M and Thiele, L, SPEA 2: Improving the Strength
Pareto Evolutionary Algorithm, TIK Report 103, Computer Engineering and
Networks Laboratory (TIK), Department of Electrical Engineering, Swiss
Federal Institute of Technology (ETH) Zurich, 2001.

15. Coello, CAC, A Comprehensive Survey of Evolutionary- based Multiobjective
Optimization Techniques. Knowledge and Information Systems, 1999; 1(3): 269-
308.

16. Veldhuizen, DAV, Multiobjective Evolutionary Algorithms: Classification,
Analyses and New Innovations. Ph.D Thesis, Graduated School of Engineering
of the Air Force Institute of Technology, Air University, 1999.

17. Veldhuizen, DAV and Lamont, GB, Multiobjective Evolutionary Algorithms:
Analyzing the State-of-the-art. Evolutionary Computation, 2000; 8: 125-147.

18. Dumitrescu, D, Genetic Chromodynamics. Studia, Babes-Bolyai University, Ser.
Informatica, 2000; 45: 39-50.

9

MOGADES: Multi-Objective Genetic
Algorithm with Distributed Environment
Scheme

Tomoyuki Hiroyasu, Mitsunori Miki, Jiro Kamiura, Shinya Watanabe, and
Hiro Hiroyasu

Summary. This chapter proposes a Multi-Objective Genetic Algorithm with
Distributed Environment Scheme (MOGADES). The performance of MAGADES
is compared with SPEA2 and NSGA-II. Further a Distributed Cooperation Model
of Multi-Objective Genetic Algorithm (DEMOGA) is introduced. The effectiveness
of DCMOGA is illustrated by comparing with SPEA2 and other multiobjective
optimization algorithms. Finally MOGADES and DCMOGA are combined into a
hybrid algorithm called Distributed Cooperation Model of Multi-Objective Genetic
Algorithm with Environmental Scheme (DCMOGADES) and applied to some test
problems. Performance of MOGADES is also illustrated by applying to some real
world problems.

9.1 Introduction

Recently, computers have made rapid progress in hardware and software. As
a result, designers of cars, airplanes, electric circuit devices, controllers, etc.
have begun to use computer simulations for decision-making. In these cases,
optimization techniques are often utilized. However, especially in real-world
problems, not only one objective but also several objectives exist. As a result,
multiobjective optimization problems should be solved. One of the goals of
multiobjective optimization problems is to obtain a set of Pareto-optimal
solution. Pareto optimal sets are an assembly of the solutions from genetic
algorithms (GA), which is one of the multi-point search methods suitable to
derive Pareto-optimal sets [1]. In the following years, several new algorithms
for finding good Pareto-optimal solutions with small calculation costs were
developed [2]. These are NSGA-II [3], SPEA-2 [4], and NPGA-II [5]. These
algorithms treat Pareto-optimal concepts explicitly.

One disadvantage of these methods is a high calculation cost [6] for
which a solution is the performing of GA on parallel computers. Evolutionary
algorithms (EAs) are genetic algorithms that have implicit parallelism [7].
Therefore, algorithms of parallel EAs are very important. Previous studies
have examined parallel algorithms of GAs for multi objective optimization

202 Hiroyasu et al.

problems (MOPs). In this study, we propose a parallel genetic algorithm
for MOPs called Multi-Objective Genetic Algorithm with Distributed
Environment Scheme (MOGADES). This is an expanded algorithm of
distributed GA (DGA) and it also uses the concept of environment DGA [6].
This algorithm is based on the algorithm that treats Pareto-optimal concepts
implicitly. To clarify the characteristics and the effectiveness of MOGADES,
we apply MOGADES to some test functions. Through the comparison of
MOGADES to SPEA2 [4] and NSGA-II [3], the advantages and disadvantages
of MOGADES are illustrated.

Good Pareto-optimal solutions should have the following characteristics:
solutions should be close to the real Pareto front, solutions should not
be concentrated but distributed, and solutions should have the optimum
solution of every single-objective function. In this study, a new mechanism is
added to multiobjective GAs called ”Distributed Cooperation Model of Multi-
Objective Genetic Algorithm (DCMOGA).” In DCMOGA, there are not only
individuals for searching Pareto-optimal solutions but also individuals for
searching the solution of one object. This mechanism of DCMOGA helps
to derive distributed Pareto solutions. In this study, DCMOGA was applied
to MOGA [8] and SPEA2. Through numerical examples, the effectiveness of
the proposed algorithm was illustrated.

After illustrating MOGADES and DCMOGA, these two algorithms
were combined. This hybrid algorithm is called ”Distributed Cooperation
Model of Multi-Objective Genetic Algorithm with Environmental Scheme
(DCMOGADES).” DCMOGADES was also applied to test functions that
demonstrated its high searching ability.

Finally, in this study, MOGADES was applied to real-world problems. GA
can be applied to several types of problems and have the robustness to find
solutions. Therefore, it is viable that GA is suitable to find solutions to real-
world problems. For example, the MOPs of diesel engine emissions were dealt
with in this study. In this problem, the amount of Nitrogen Oxide (NOx) and
soot of engines was minimized and fuel efficiency maximized.

9.2 Genetic Algorithms for Multiobjective Optimization
Problems

9.2.1 Multiobjective Optimization Problems

In optimization problems when there are several objective functions, the
problems are called Multiobjective Optimization Problems (MOPs)[1]. MOPs
are formulated as follows:{

minimize f(x) = (f1(x), f2(x), . . . , fk(x))T

subject to the constraints gj(x) ≤ 0, (j = 1, . . . , m) (9.1)

Usually these objectives cannot minimize or maximize at the same time
due to a trade-off relationship between the objectives. As a result, one of

9 MOGADES: Multiobjective Genetic Algorithm 203

the goals of the MOPs is to find a set of Pareto-optimal solutions. Several
algorithms were proposed and applied to MOPs [1]. Recently, several good
algorithms have been developed, most of which have similar mechanisms as
recent GA approaches. The followings mechanisms are:

• Reservation mechanism of the excellent solutions
• Reflection to search solutions mechanism of the reserved excellent solutions
• Cut down (sharing) method of the reserved excellent solutions
• Assignment method of fitness function
• Unification mechanism of values of each objective
• Selection methods.

Those algorithms are roughly divided into two categories: the algorithms
that either treat Pareto optimal solutions implicitly or explicitly. Most
multiobjective GAs treat Pareto-optimal solutions explicitly. Among those
algorithms, SPEA2 [4] and NSGA-II [3] have powerful search mechanisms
and derive good results.

On the other hand, VEGA [9] is a traditional GA for multiobjective
problems and an algorithm that treats Pareto optimal solutions implicitly.
MOGLS [10] is also an algorithm that treats Pareto optimal solutions
implicitly. MOGLS has several important mechanisms. It also has a Pareto
archive where Pareto solutions are reserved from not only the genetic search
but also the local search. The weights that are used when the objectives are
combined are varied randomly.

MOGADES, which is proposed in this chapter, is an algorithm based on
the GA that treats Pareto optimal solutions implicitly.

9.2.2 Parallelization of Multiobjective Genetic Algorithms

GAs are optimization algorithms that mimic the process of evolution [8,11].
Due to GA being one of the multi-point search methods, several types
of parallel methods exist. Parallel GAs are roughly classified into three
categories: a master-slave population model, an island model, and a cellular
model [12].

In the island model, also called Distributed GA (DGA), a population is
divided into sub-populations. In each island, a conventional GA is performed
for several iterations in which some individuals are chosen and moved to other
islands. This operation is called migration. After a migration, GA operations
are started again in each island. As the network traffic is not huge and each
island has a small number of individuals, an island model can gain high parallel
efficiency [12]. In a single-objective problem, it is reported that DGA can find a
good solution with a small calculation cost [13]. However, because the number
of individuals is small in an island, DGA cannot find good Pareto-optimal
solutions in multiobjective problems. Therefore, to find good solutions in an
island model, some mechanisms to find solutions should be included. In a

204 Hiroyasu et al.

previous study, we developed an island model that is called a Divided Range
Multi Objective Genetic Algorithm (DRMOGA) [14]. This is an algorithm
that treats Pareto optimal solutions explicitly. However, the searching ability
of DRMOGA is not good compared to SPEA2 [4] and NSGA-II [3].

9.2.3 Environment Distributed Genetic Algorithms

Usually each island of DGAs is assigned to one processor of parallel computers
[7]. Since the network cost is not high in DGAs, a high parallel efficiency can
be derived. It is also reported that DGAs can find optimum solutions with
smaller calculation costs than that of the simple GA. As a result, DGAs
provide many advantages.

Generally, every island has the same environment: population size,
crossover rate, mutation rate and so on. However, the environment can be
different in each island. For example, when the crossover rate and mutation
rate are different in each island, the searching ability of DGA is increased. We
named this DGA Environment Distributed Genetic Algorithm (EDGA) [14].

This scheme can also be applied to other problems. In the following section,
the proposed algorithm, MOGADES, is explained. MOGADES is an algorithm
where the EDGA is extended for MOPs.

9.2.4 Evaluation Methods

To compare the results derived by each algorithm, the following evaluation
methods were used in this study.

Ratio of Non-dominated Individuals (RNI)

This performance measure is obtained by comparing two solutions which are
derived by two methods. RNI is derived from the following steps. First, two
populations from different methods are mixed. Second, the solutions that are
non-dominated are chosen. Finally, the RNI of each method is determined as
the ratio of the number of the solutions from chosen solutions and derived by
the method and the total number of the solutions. With RNI, the accuracy
of the solutions can be compared.

Figure 9.1 shows an example of RNI. In this figure, method A and B are
compared. This case suggests that A and B are almost the same.

Maximum, Minimum and Average Values of Each Object of
Derived Solutions (MMA)

To evaluate the derived solutions, not only the accuracy but also the expanse
of the solutions is important. To discuss the expanse of the solutions, the
maximum, minimum and average values of each object are considered.

9 MOGADES: Multiobjective Genetic Algorithm 205

method B

method A

50 %

method A method B

A% B%

Figure 9.1. Example of RNI.

Cover Rate (CR)

Cover rate is the index for the coverage of the Pareto optimum individuals.
It indicates the diversity of the solutions. We derive the cover rate from the
division space of objective domain. The division space is derived as follows:
the area between the minimum and the maximum values of each objective
function is divided into certain number N. The number of the division spaces
containing an individual is counted. The cover rate is the average of this
number. Therefore, the solution whose cover rate is close to 1.0 has a high
diversity. In the following simulations, N = 50 was used.

9.3 Multiobjective Genetic Algorithm with Distributed
Environment Scheme (MOGADES)

9.3.1 Algorithm of MOGADES

In the previous section, EDGA was explained. In this section, EDGA is
extended for MOPs. The proposed algorithm is called ”Multi-Objective
Genetic Algorithm with Distributed Environment Scheme (MOGADES)”.

A MOP can be changed into a single objective optimization using weighted
parameters wi as follows:

min
x∈X

f(x) =
k∑

i=1

wifi(x) (9.2)

where wi ≥ 0,

k∑
i=1

wk = 1 (9.3)

To derive Pareto-optimal solutions, several simulations with different
weight parameters are needed. Because MOGADES is one of the EDGAs,
there are several islands with each island having a different weighted

206 Hiroyasu et al.

parameter. This is the basic concept of MOGADES. At the same time, the
search mechanisms of SPEA2 and NSGA-II are included in MOGADES. The
overall process of MOGADES is summarized as follows. In this case, the
problem that has two objectives is explained. Each island has its own weighted
value, an elite archive and a Pareto archive. The weighted value is used when
the fitness value is derived. During a search, the solutions that have the best
fitness values are preserved in an elite archive. Similarly, the solutions that
are non-dominated to the other solutions are also stored in a Pareto archive.

1. Initialization: Generate new individuals. Those individuals are divided
into islands P 0

i (i = 1, 2, . . . M). Set the weight value wi of ith island. At
first, the weight values are arranged equally from 0.0 to 1.0. For example,
when M = 5, the weights are 0, 0.25, 0.5, 0.75 and 1.0. In this time,
the elite archive EA0

i and Pareto archive PA0
i are empty. Set generation

t = 0. Calculate the values of function 1, 2 and the fitness value of each
individual.

2. Starting new generation: Set t = t + 1.
The Steps from 3 to 9 are performed in an island independently.

3. Crossover and mutation: Perform crossover and mutation operations.
4. Evaluation: Calculate the values of function 1 and 2. Normalize the values

of functions by the maximum value of each function. Calculate the fitness
value of each individual. The fitness value is derived from Equation 9.3.

5. Selection: Perform selection operation to P t
i .

6. Terminal check: When the terminal condition is satisfied, terminate the
simulation. Otherwise, the simulation is continued.

7. Pareto reservation: Choose the individuals of P t
i and PAt−1

i that are non-
dominated and copy them into PAt

i. When the number of PAt
i overcomes

the maximum number of the Pareto archive, the sharing operation is
performed. The sharing method of MOGADES is carried out as follows.
The individuals of P t

i are sorted with along to the fitness value. Calculate
the distance of the fitness value between the neighborhood individuals.
Truncate the individual who has the smallest distance.

8. Elite reservation: According to the fitness values, reserve the individuals
who have good fitness values into EAt

i.
9. Renewal of the search individuals: P t

i = P t−1
i + PAt

i + EAt
i.

10. Migration: Choose some individuals and move to the other island. In
MOGADES, migration topology is fixed. When migration is performed,
the weight value of the island is changed in the following equation:

wi(new) = wi+1
d(i+1,i)

d(i,i−1) + d(i+1,i)
+ wi−1

d(i,i−1)

d(i,i−1) + d(i+1,i)
(9.4)

In this equation, wi is the weight value of ith island, d(i+1,i) the distance
between the individuals who has the best value in i + 1th island and ith
island.

11. Return to Step 2.

9 MOGADES: Multiobjective Genetic Algorithm 207

weight distribution

weight adjustment

neighborhood migration

elite archive

pareto archive

populations

Figure 9.2. MOGADES.

9.3.2 Numerical Examples

This section discusses the effectiveness of MOGADES. MOGADES was
applied to find Pareto-optimal solutions of test functions. The results are
compared with those of SPEA2 and NSGA-II.

Test Functions

In this paper, we use a continuous function and a knapsack problem. These
problems are explained as follows. In these equations, f denotes an objective
function and g(g ≥ 0) indicates a constraint.

KUR :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min f1 =
∑n

i=1(−10 exp

(−0.2
√

x2
i + x2

i+1))
min f2 =

∑n
i=1(|xi|0.8 + 5 sin(xi)3)

xi[−5, 5], i = 1, . . . , n, n = 100

KP 750 − 2 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min fi(x) =
∑n

i=1 xi · pi,j

s.t.
g(x) =

∑n
i=1 xiẇi,j ≤ Wj

pi,j(profit value)
wi,j(weight value)
1 ≤ j ≤ 2

KUR was used by Kursawa [15]. It has a multi-modal function in one
component and pair-wise interactions among the variables in the other
component. As there are 100 design variables, a high calculation cost is
needed to derive solutions. KP750-2 is a 0/1 knapsack problem and it is a
combinatorial problem [4,16]. There are 750 items and two objects. The profit
and weight values are the same as those in Zitzler [17].

Parameters of GAs

In this study, in order to discuss the effectiveness of the algorithm, a bit coding
is applied for all the problems. It is known that good results are derived when

208 Hiroyasu et al.

real value coding is applied. Similarly, one point crossover and bit flip are
used for crossover and mutation. The length of the chromosome is 20 bit per
one design variable for the continuous problems and 750 bit for the knapsack
problems. In continuous problems, population size is 100 and the simulation
is terminated when the generation is over 250. In the knapsack problems,
population size is 250 and the simulation is terminated when the generation
exceeds 2000.

KUR

In this problem, there are 100 design variables and a lot of generations are
needed to derive the solutions. The results of RNI and MMA are shown in
Figures 9.3 and 9.4.

In this case, the RNI of MOGADES is superior to the other methods. Since
MOGADES has islands searching the edges of Pareto-optimal solutions, it can
derive diverse solutions especially in difficult problems.

KP-2

KP-2 is the knapsack problem. It is very difficult to search real Pareto-optimal
solutions. The results of RNI, MMA and CR are shown in Figures 9.5 - 9.7.

In this case, MOGADES obtained very good results. Because this problem
is very difficult, the factor of MOGADES that derives the diverse solutions is
efficient.

9.3.3 Conclusion of this Section

In this section, a new algorithm of GA for MOPs was explained. The
proposed algorithm is called MOGADES. Through the comparison of NSGA-
II and SPEA2 with test functions, MOGADES was found to have the better
searching ability.

As MOGADES is based on distributed GAs, MOGADES is a very suitable
model for parallel computers.

MOGADES

SPEA-II

NSGA-II
71% 28%

59%41%

50%50%

Figure 9.3. Results of KUR (RNI).

9 MOGADES: Multiobjective Genetic Algorithm 209

-700-1000 -900 -800 -600

0

-400

-300

-200

-100

f1(x)

f2(x)

MOGADES

SPEA-II
NSGA-II

Average

F2(x) max

F2(x) min

F1(x) maxF1(x) min

Figure 9.4. Results of KUR (MMA).

MOGADES

SPEA-II

NSGA-II
18% 82%

64%36%

79%21%

Figure 9.5. Results of KP750 (RNI).

9.4 Distributed Cooperation Model of Multiobjective
Genetic Algorithm (DCMOGA)

9.4.1 Algorithm of DCMOGA

In good Pareto-optimal solutions, an optimum solution that gives a
minimum/maximum value for each objective should be included. In
DCMOGA, there are N + 1 islands when there are N objects. One island
is the group for finding the Pareto-optimal solutions. This group is called the
MOGA group. One of the other groups is a group for finding the optimum of
the ith objective function. These groups are called SOGA groups. After some
iterations, the solutions are exchanged between the MOGA group and SOGA

210 Hiroyasu et al.

3000022000 24000 26000 28000

30000

22000

24000

26000

28000

f1(x)

f2(x)

MOGADES

SPEA-II
NSGA-II

Average

F2(x) max

F2(x) min

F1(x) maxF1(x) min

Figure 9.6. Results of KP750 (MMA).

0.432

0.349

0.748MOGADES

NSGA-II

SPEA-II

0 0.2 0.4 0.6 0.8

Figure 9.7. Results of KP750 (Cover Rate).

group for the ith objective function. From the MOGA group, the solutions
whose value of the ith objective function is the best is sent to the SOGA group
for the ith objective function. From the SOGA group, for each ith objective
function, the best solution at that iteration is sent to the MOGA group. In
this way, the solutions are derived with the cooperation of MOGA and SOGA
groups.

1. All of the individuals are initialized.
2. These individuals are divided into n + 1 groups. n of them are SOGA

groups and each group has its own objective function. One of them is a
MOGA group that searches Pareto-optimal solutions.

3. In each group, the solution search has been performed for several
iterations.

4. In every iteration, the elite archive and the Pareto archive are renewed.

9 MOGADES: Multiobjective Genetic Algorithm 211

5. After certain iterations, solutions are transformed between MOGA and
SOGA groups. In this step, the solution Mi whose value of the ith
objective function Fi is best in the MOGA group is chosen. The solution
Mi is sent to the group whose target objective function is the ith objective
function.

6. On the other hand, the best solution Si in the ith group of SOGA is sent
to the MOGA group.

7. The solutions Mi and Si are compared. When Si > Mi, some individuals
of MOGA are added and SOGA are decreased. When Si < Mi, some
individuals of MOGA are deceased and SOGA are added.

8. The terminal condition is checked. If the condition is not satisfied, the
process is back to Step 3.

9.4.2 Numerical Examples

In this section, in order to discuss the effectiveness of DCMOGA, MOGA and
SPEA2 are combined into DCMOGA. Then DCMOGA is applied to solve a
knapsack problem.

Test Functions

The knap sack problem is a discrete problem for which it is very difficult to
find a real Pareto front. In this paper, the problem that has 750 items and 2
objectives is treated and it is called KP750-2. The equations are explained in
Section 9.3.2.

GA Parameters

To solve the test functions, a bit coding is used for representing the individual.
A 750 bit length is used for the knapsack problem. In GA, two point crossover
and bit flip mutation is applied. In the knapsack problem, there are 250
individuals. The simulation is terminated when the number of evaluations
is over 500,000. All the results are the average of 10 trials.

Results

The derived Pareto fronts are shown in Figures 9.8 - 9.11. In these figures,
DC/MOGAs means that MOGA is used in DCMOGA. Similarly, DC/SPEA2
means that SPEA2 is combined into DCMOGA.

There is a big difference between the solutions of DCMOGA where
MOGA is implemented with MOGA versus the solutions of MOGA itself.
The solutions of MOGA are concentrated on one part. On the other hand,
DCMOGA can find widespread solutions.

When DCMOGA is combined with SPEA2, the solutions are also
widespread. However, the accuracy of the solutions is lost. Therefore, the RNI

212 Hiroyasu et al.

DC+MOGA

MOGA

Figure 9.8. Plot of Pareto Solutions (DC/MOGAs).

0
20 40 60 80 100

DC+MOGA MOGA

79.5% 20.5%

Figure 9.9. RNI (DC/MOGAs).

of DCMOGA is not good in the comparison with SPEA2. Even in this case,
the real accuracy is not so different. Thus, it is concluded that DCMOGA is
an efficient mechanism for GAs in multiobjective problems.

9.5 Distributed Cooperation model of MOGA with
Environmental Scheme (DCMOGADES)

9.5.1 Flow of DCMOGADES

In the previous sections, two algorithms of GAs for MOP, MOGADES and
DCMOGA are explained. In this section, MOGADES and DCMOGA are
combined. The algorithm is called DCMOGADES.

DCMOGADES has the mechanism to find the Pareto-optimal solutions
that are close to the real Pareto front, widespread, and the same as the
solutions that maximize/minimize each objective. The following steps are the
procedures.

9 MOGADES: Multiobjective Genetic Algorithm 213

DC/SPEA2

SPEA2

Figure 9.10. Plot of Pareto Solutions (DC/SPEA2).

0
20 40 60 80 100

DC+SPEA2 SPEA2

28.6% 71.4%

Figure 9.11. RNI (DC/SPEA2).

1. There are m islands. These islands are divided into n+1 groups, since there
are N objective functions. One is the group for finding the Pareto-optimal
solutions. This group is the MOGA group. One of the other groups is the
group for finding the optimum of the ith objective function. These groups
are called the SOGA groups.

2. Initialize all of the individuals in the islands.
3. In the MOGA group, the Pareto-optimal solutions are searched by

MOGADES. In SOGA groups, each optimum solution is searched by
DGA.

4. At every generation, the elite archive and the Pareto archive are renewed
in the MOGA group. The elite archive is renewed in the SOGA groups.

5. After some iterations, individuals are chosen randomly and moved to the
other islands in every group.

6. After some iterations, the solutions are exchanged between the MOGA
group and the SOGA group for the ith objective function. From the
MOGA group, the solutions whose value of ith objective function is the
best is sent to the SOGA group for the ith objective function. This solution

214 Hiroyasu et al.

is Mi. From the SOGA group for the ith objective function, the best
solution at that iteration is sent to the MOGA group. This solution is Si.

7. Mi and Si are compared. When Mi > Si, one of the islands from the
MOGA group is moved to the SOGA group for the ith objective function.
When Mi ¡ Si, one of the islands of the SOGA group for the ith objective
function is moved to the MOGA group.

8. The terminal criterion is checked. If the criterion is not satisfied, the
simulation returns to Step 3.

The concept of DCMOGADES is summarized in Figure 9.12.

9.5.2 Numerical Examples

In this section, in order to discuss the effectiveness of DCMOGA, DCMOGA
is applied to test functions. The results are compared with those of SPEA2
and NSGA-II.

Test Functions

In this section, we use a knapsack problem for a discrete problem and KUR
for a continuous problem. The problems are shown in Section 9.3.2.

SOGA(F1) Group SOGA(F2) Group

MOGA Group

Figure 9.12. Distributed Cooperation Model of Multiobjective Genetic Algorithm
with Environmental Scheme (DCMOGADES).

9 MOGADES: Multiobjective Genetic Algorithm 215

GA Parameters

To solve the test functions, a bit coding was used for representing the
individuals. A 750 bit length was used for the knapsack problem and a 20
bit length was used for each design variable of the KUR. In GA, two-point
crossover and bit-flip mutation was applied. In the knapsack problem, there
were 250 individuals. The simulation was terminated when the number of
evaluations was over 500,000. In the KUR problem, there were 100 individuals.
The simulation was terminated when the generation was over 1,000. In the
following section, the results of DCMOGADES are compared with those of
NSGA-II and SPEA2. All the results are the average of 10 trial runs.

KP750-2

The derived Pareto fronts are shown in Figure 9.13 (all-in-one) and in Figures
9.15 to 9.17 (individual comparisons). The RNI of KP750-2 is shown in Figure
9.14.

From the results, it is obvious that the solution set of DCMOGADES is
more diverse than that of the other algorithms. The figure of RNI illustrates
the superiority of DCMOGADES to the MOGADES. These results illustrate
the effectiveness of DCMOGA.

KUR

The derived Pareto fronts are shown in Figure 9.18 (all-in-one) and in Figures
9.20 to 9.22 (individual comparisons). In the KUR problem, DCMOGADES

Figure 9.13. KP750 (all).

216 Hiroyasu et al.

and MOGADES derived the Pareto front whose solutions are widespread.
On the other hand, some solutions of SPEA2 and NSGA-II are concentrated
around the center of the figure. This figure also indicates that MOGADES
has higher searching ability compared to the SPEA2 and NSGA-II in this
problem. In the comparison of DCMOGADES with MOGADES, the results
of DCMOGADES are superior to MOGADES. Therefore, in this problem, the
factor of DCMOGA works well.

0 20 40 60 80 100

60%

75%

67%

40% MOGADES

25%

33% SPEA2

DCMOGA NSGA2

Figure 9.14. RNI of KP750.

Figure 9.15. KP750 (DCMOGADES vs MOGADES).

9 MOGADES: Multiobjective Genetic Algorithm 217

Figure 9.16. KP750 (DCMOGADES vs NSGA2).

Figure 9.17. KP750 (DCMOGADES vs SPEA2).

9.6 Multiobjective Optimization of Diesel Engine
Emissions and Fuel Economy by MOGADES

9.6.1 Introduction

This section discusses the application of MOGADES to real-world problems.
The MOPs of diesel engine emissions are also discussed in this section.

218 Hiroyasu et al.

Figure 9.18. KUR (all).

0 20 40 60 80 100

64%

71%

74%

48% MOGADES

29%

26% SPEA2

DCMOGA NSGA2

Figure 9.19. RNI of KUR.

Because of the merit of the durability and fuel efficiency, a diesel engine is
loaded from small to large vehicles. However, with increasing environmental
concerns and legislated emissions standards, current engine research is focused
on simultaneous reduction of soot and NOx while maintaining reasonable fuel
economy. The combustion improvement can be achieved by designing a good
injection system with characteristics of spray combustion. To develop a good
injection system, the parameter search for determining the influence of an
organization performance and an exhaust performance should be performed.
However, when this parameter search is performed experimentally, large
amounts of expense and time are incurred. For this reason, optimization of
the parameter by the simulation on a computer is very useful.

9 MOGADES: Multiobjective Genetic Algorithm 219

Figure 9.20. KUR (DCMOGADES vs MOGADES).

Figure 9.21. KUR (DCMOGADES vs NSGA2).

220 Hiroyasu et al.

Figure 9.22. KUR (DCMOGADES vs SPEA2).

When optimizing the parameter by the simulation to minimize the fuel
efficiency, the amount of NOx discharge and the amount of soot discharge
have been made into the objective functions. However, in previous studies
[18, 19] these problems are treated as single-objective problems. As there is a
trade-off relationship between the fuel efficiency, NOx and soot, it is natural
to treat these problems as multi-objective optimization problems.

In this study, the minimization of fuel efficiency, the amount of NOx
discharge, and the amount of soot discharge are simultaneously performed
by using the concept of multiple-purpose optimization. It is then shown that
multiobjective optimization is very useful in real-world problems. At the same
time, it is also shown that MOGADES can find reasonable solutions in the
problems of diesel engine emission.

9.6.2 Diesel Engine Combustion Models

The process of combustion in diesel engines is very complicated. There are
many required items for models such as the prediction of the heat generation
rate, the prediction of exhaust ingredients, the heat distribution, the density
distribution, and so on. As a result, it is almost impossible to build the model
of diesel combustion with numerical expressions. On the other hand, several
types of the models of diesel combustion have been proposed [20-23]. Those
are roughly divided into three categories.

9 MOGADES: Multiobjective Genetic Algorithm 221

• Thermodynamic model: This model only predicts the heat generation
ratio.

• Phenomenological model: In this model, the prediction of equation which
is derived by the experience is used.

• Detailed multidimensional model: This model predicts several items by
solving differential equations with small time steps.

In this section, the HIDECS code [21] was used for a diesel engine
simulation. HIDECS is based on the phenomenological model.

In the detailed multidimensional model [20], the heat and density
distribution of the engine is predicted. However, it takes a large amount of
computational time to derive the value of the fuel efficiency, the amount of
NOx and soot. This is the very big disadvantage for solving optimization
problems by GAs. On the other hand, the phenomenological model is suitable
for the optimization by GAs. The phenomenological model does not need a
high calculation cost to derive the values of the fuel efficiency, the amount of
NOx and soot with a high degree of accuracy.

HIDECS can deal with several types of diesel engines. In this simulation,
the following items are the specifications of the target diesel engine: bore
diameter is 102.0 mm, stroke is 52.5 mm, connecting rod is 165.0 mm, and
compression ratio is 17.0, cylinder pressure is 101.3 kPa, number of holes is 4,
and injector hole diameter is 0.2 mm, The included spray angle is 32 degrees,
the start of the fuel injection is -5 degree, and the amount of fuel is 40.0 mg/st.

In diesel engines, the connecting rod is rotating in the cylinder. In
HIDECS, these rotations are expressed as the connecting rod angle from -
180 to 180 degree in a stroke. When the connecting rod angle equals 0, a
piston is located in the highest place.

In a simulation of this engine, the fuel injection starts at -5.0 degree and
the injection lasts for 32 degrees.

The total amount of fuel injection is constant, but the shape of the fuel
injection can be changed. The shape of the fuel injection is a design variable
in this simulation.

HIDECS can derive several characteristics of engines. In this simulation,
specefic fuel consumption (SFC), the amount of NOx, and the amount of soot
were focused. SFC indicates fuel efficiency. A smaller value of SFC means a
better fuel efficiency.

9.6.3 System Construction

In the proposed system, MOGADES was used as an optimizer and HIDECS
was used as an analyzer. Between the optimizer and analyzer, text files were
exchanged. Basically, several types of GAs and analyzers were used in this
system.

In this simulation, the amount of SFC, the amount of NOx and the amount
of soot are the objectives. The split injection rate-shape is a design variable.

222 Hiroyasu et al.

The total amount of fuel injection, the start of the injection and the duration
of the injection are fixed while the injection rate is variable. The shape of the
injection rate can be defined as follows.

The duration of the injection is divided into six blocks. Each block has
its own width and height. When these widths and heights are determined,
the shape of the injection rate is determined. Therefore, MOGADES decides
these values.

In Figure 9.23, the concept of the coding method is summarized. There
are 12 variables (6 blocks have widths and heights). These are real values and
coded into 8 bits by gray coding.

Because the amount of fuel and the duration of injection are fixed, the
total area of 6 blocks is also fixed.

9.6.4 GA Parameters

In these simulations, the following parameters are used. The length of
the chromosome is 8 bit per one design variable, while the total length
of the chromosome is 96. The population size is 100 and the number of
subpopulations is 10. The crossover rate and mutation rate are 1.0 and 1/96
respectively. At the same time, migration rate and migration interval are 0.4
and 10 respectively. We use two-point crossover and tournament selection.
The simulation is terminated when the generation is over 100.

9.6.5 Results

In Figure 9.24, the derived Pareto solutions are plotted. In the figure, all the
plotted solutions are dominant and there are no non-dominant solutions that
are derived during the search.

In Figure 9.25, the derived solutions are projected on the SFC-NOx, SFC-
soot and NOx-soot surfaces respectively.

From these figures, it is found that the Pareto solutions are derived.
In Figure 9.26, the solutions with the best value for each objective function

are illustrated.
From Figure 9.26, the following points are clarified.

a

b

c
d

e
f

g
h i

j
k

la - l : design variable

Time

In
je

ct
io

n
R

at
e(

%
)

Figure 9.23. Coding method.

9 MOGADES: Multiobjective Genetic Algorithm 223

SFC (g
/kW

.hour)
NOx (g/kW.hour)

S
M

O
K

E
(g

/k
W

.h
ou

r)

0.3

0.2

0.1
300

250
200

1500
1

2
3

Figure 9.24. Pareto optimum solution (3D).

SFC(g/kW.hour)

300250200150

N
O

x
(g

/k
W

.h
ou

r)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

SFC (g/kW.hour)
300250200150

S
M

O
K

E
 (

g/
kW

.h
ou

r)

0.3

0.2

0.1

NOx (g/kW.hour)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
M

O
K

E
 (

g/
kW

.h
ou

r)

0.3

0.2

0.1

Figure 9.25. Pareto optimum solution (2D).

Injection Timing

In
je

ct
io

n
R

at
e

(%
)

10

8

6

4

2

0
0 6 12 18 24 30 36

Injection Timing

In
je

ct
io

n
R

at
e

(%
)

50

40

30

20

10

0
0 6 12 18 24 30 36

Injection Timing

In
je

ct
io

n
R

at
e

(%
)

10

8

6

4

2

0
0 6 12 18 24 30 36

(a) Solution which has the minimum
value of SFC

(b) Solution which has the minimum
value of NOx

(c) Solution which has the minimum
value of Soot

Figure 9.26. Solutions which have the minimum value of each objective function.

224 Hiroyasu et al.

• It is confirmed that there are trade-off relationships between NOx and
SFC, soot and SFC, and NOx and soot.

• In the solution with the best value of SFC, all of the fuel evaporated at
once at the beginning of the injection.

• In the solution with the best value of NOx, some of the fuel evaporated at
the beginning of the injection while the rest evaporated at the end of the
injection.

• A double step injection is used to reduce the amount of NOx. It is known
as a pilot projection.

From the results, the following advantages of GAs for MOPs are confirmed.

• GAs can find Pareto-optimal solutions with one trial. In a single-objective
optimization problem, GAs need a high calculation cost compared to
gradient search methods. On the other hand, in a MOP, gradient search
methods also need much iteration to find Pareto-optimal solutions. It is
very easy to apply GAs to several types of problems. GAs also have the
robustness for finding the optimum solution in a global area. Thus, GAs
are very useful tools for finding Pareto-optimum solutions.

• Usually, a multi-objective problem is turned into a single objective problem
by setting an evaluation function when the solutions are derived by
gradient search method. However, it is very difficult to set up an evaluation
function because it affects the results. On the other hand, GAs can find
the Pareto optimum solutions without setting up the excess evaluation
function.

• From the results of this section, the solutions that minimize each objective
are different since there are trade-off relations between the objective
functions and because designers do not know the relationship between the
objectives early in the design stage. Therefore, it is very useful for designers
to show the Pareto-optimal solutions. Designers can find solutions with
their preferences.

• Even when the problems are at the bottom stage of design and designers
know the relationship between the objective functions, it is useful to
derive the solutions by GAs. To solve the problem, the designers have
to define the objective function and the constraints and the values of the
constraints. Usually the solutions are on the constraints. Therefore, the
designers should be careful in deciding the value of the constraints. When
the designers set these constraints as objective functions, they can find
several solutions around the constraints. Therefore, the information of the
Pareto solutions is useful for the designers.

9.6.6 Summary of this Section

In this section, MOGADES was applied to optimization problems of diesel
engine emissions. In this simulation, the amount of SFC, NOx and soot

9 MOGADES: Multiobjective Genetic Algorithm 225

were minimized by changing the rate of fuel injection. As there is a trade-
off relationship between SFC, NOx and soot, this problem becomes a
multiobjective optimization problem. From this simulation, MOGADES can
successfully derive Pareto solutions. It is also concluded that MOGADES can
derive good solutions in real-world problems and GAs are very powerful tools
for MOPs in real-world problems.

9.7 Conclusion

In this study, a new GA for MOPs was illustrated called ”Multi-Objective
Genetic Algorithm with Distributed Environment Scheme (MOGADES)”.
MOGADES is based on an algorithm that treats Pareto optimality implicitly.
However, MOGADES includes other mechanisms from recent methods that
are based on algorithms that also treat Pareto optimality explicitly, such as
NSGA-II or SPEA2.

In this study, other mechanisms of GA for MOPs were introduced
called ”Distributed Cooperation Model of Multi-Objective Genetic Algorithm
(DCMOGA)”. DCMOGA searches not only Pareto solutions but also
solutions that minimize/maximize each objective function. Using DCMOGA,
widespread Pareto solutions can be derived.

Finally, MOGADES was applied to optimization problems of diesel engine
emissions. From this simulation, it is found that MOGADES can derive good
solutions in real-world problems. GAs are very powerful tools for MOPs found
in real-world problems.

References

1. Deb, K, Multi-Objective Optimization Using Evolutionary Algorithms,
Chichester, UK: Wiley, 2001

2. Coello, CA, (2000), Handling Preferences in Evolutionary Multiobjective
Optimization: A Survey, 2000 Congress on Evolutionary Computation, vol.1:
30-37, 2000.

3. Pratab, A, Deb, K, Agrawal, S, and Meyarivan, T, A Fast Elitist Non-
dominated Sorting Genetic Algorithm For Multi-objective Optimization:
NSGA-II, KanGAL report 200001 Indian Institute of Technology, Kanpur,
India, 2000.

4. Zitzler, E, Laumanns, M, and Thiele, L, SPEA2: Improving the Performance
of the Strength Pareto Evolutionary Algorithm. In Technical Report 103,
Computer Engineering and Communication Networks Lab (TIK), Swiss Federal
Institute of Technology (ETH), Zurich, 2001.

5. Mayer, A, Erickson, M, and Horn, J, The Niched Pareto Genetic
Algorithm Applied to the Design of Groundwater Remediation Systems,
First International Conference on Evolutionary Multi-Criterion Optimization,
Lecture Notes in Computer Science No. 1993, pp. 681-695, Springer Verlag,
2000.

226 Hiroyasu et al.

6. Hiroyasu, T, Miki, M, and Watanabe, S, The New Model of Parallel Genetic
Algorithm in Multi-objective Optimization Problems -Divided Range Multi-
objective Genetic Algorithms, IEEE Proceedings of the 2000 Congress on
Evolutionary Computation, pp. 333-340, 2000.

7. Hiroyasu, T, Miki, M, and Tanimura, Y, Characteristics of models of parallel
genetic algorithms on pc cluster systems, Proceedings of 1st International
Workshop on Cluster Computing (IWCC’E9), CD-ROM, 1999.

8. Fonseca, CM, and Fleming, PJ, Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization, Proceedings of the
5th International Conference on Genetic Algorithms, pp. 416-423, 1993.

9. Sawa, G, Long, YH, and Hiroyasu, H, The Simulation of the Distribution of
Temperature and Mass of Liquid and Vapor Fuels, and the Wall Implinging
Spray Pattern in a Diesel Combustion Chamber, SAE Techinical Paper Series,
(2000-01-1887), 2000.

10. Murata, T, and Ishibuchi, H, Moga: Multi-Objective Genetic Algorithms,
Proceedings of the 2nd IEEE International Conference on Evolutionary
Computing, pp. 289-294, 1995.

11. Goldberg, DE, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesly, USA, 1989.

12. Cantu-Paz, E, A Survey of Parallel Genetic Algorithms, Calculateurs Paralleles,
10(2), 1998.

13. Tanese, R, Distributed Genetic Algorithms, Proceedings of 3rd International
Conference on Genetic Algorithms, 1989.

14. Miki, M, Hiroyasu, T, and Kaneko, M, A Parallel Genetic Algorithm with
Distributed Environment Scheme, Proceedings of the International Conference
on Parallel and Distributed Processing Techiniques and Applications, vol.2, pp.
619-625, 2000.

15. Frank, L, A variant of evolution strategies for vector optimization, PPSN I,
Lecture Notes in Computer Science: 496, pp. 193-197, 1991.

16. Zitzler, E, and Thiele, L, Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach, IEEE
Transactions on Evolutionary Computation, 1999; 3(4): 257-271.

17. Zitzler, E, Test Problems for Multiobjective Optimizers, http://www.tik.ee.ethz
.ch/∼zitzler/testdata.html accessed on 19 March 2004.

18. Montgomery, DT, Senecal, PK, and Reitz, RD, A Methodology for Engine
Design Using Multi-dimensional Modeling and Genetic Algorithms with
Validation Through Experiments, International Journal of Engine Research,
2000.

19. Senecal, PK, and Reitz, RD, Simultaneous Reduction of Emissions and Fuel
Consumption Using Genetic Algorithms and Multi-dimensional Spray and
Combustion Modeling, SAE Paper, (2000-01-1890), 2000.

20. Amsden, AA, Kiva-3v: A Block-structured Kiva Program for Engines with
Vertical or Canted Valves, Los Alamos National Labs (LA-13313-MS), 1997.

21. Hiroyasu, H, and Kadota, T, Phenomenologocal Model of Diesel Combustion,
hidecs, SAE Technical Paper Series, (760129), 1976.

22. Nishida, K, Yoshizaki, T, and Hiroyasu, H, Approach to Low NOx and Smoke
Emission Engines by Using Phenomenological Simulation, SAE Techinical
Paper Series, (930612), 1993.

9 MOGADES: Multiobjective Genetic Algorithm 227

23. Nishida, K, Yoshizaki, T, and Hiroyasu, H, Three-dimensional Spray
Distributions in a Direct Injection Diesel Engine, SAE Techinical Paper Series,
(941693)Schafer J. D., (1985), Multiple Objective Optimization with Vector
Evaluated Genetic Algorithms, Proceedings of 1st International Conference on
Genetic Algorithms and Their Applications, pp. 93-100, 1994.

10

Use of Multiobjective Optimization Concepts
to Handle Constraints in Genetic Algorithms

Efrén Mezura-Montes and Carlos A. Coello Coello

Summary. This chapter describes the general multiobjective optimization concepts
that can and have been used to incorporate constraints of any type (linear, non-
linear, equality and inequality) into the fitness function of a genetic algorithm
used for global optimization. Several approaches reported in the literature are also
described and four of them are compared using several test functions. The results
obtained are discussed and further ideas about how to devise new approaches are
also briefly analyzed.

10.1 Introduction

Evolutionary Algorithms (EAs) are heuristics that have been successfully
applied in a wide set of areas [1-11], both in single- and in multiobjective
optimization. However, EAs lack a mechanism able to bias efficiently the
search towards the feasible region in constrained search spaces. This has
triggered a considerable amount of research and a wide variety of approaches
have been suggested in the last few years to incorporate constraints into the
fitness function of an evolutionary algorithm [12,13].

The most common approach adopted to deal with constrained search
spaces is the use of penalty functions. When using a penalty function, the
amount of constraint violation is used to punish or “penalize” an infeasible
solution so that feasible solutions are favored by the selection process. Despite
the popularity of penalty functions, they have several drawbacks from which
the main one is that they require a careful fine tuning of the penalty factors
that can bias the search in an appropriate way [12,14].

Among the several approaches that have been proposed as an alternative
to the use of penalty functions, there is a group of techniques in which the
constraints of a problem are handled as objective functions (i.e., a single-
objective constrained problem is restated as an unconstrained multiobjective
problem). This chapter focuses on these techniques.

This chapter is organized as follows. Section 10.2 presents the basic
concepts both from global optimization and from multiobjective optimization

230 Mezura-Montes and Coello Coello

that are going to be used in the remainder of this chapter. In Section 10.3,
the most popular multiobjective-based constraint-handling techniques are
discussed. Section 10.4 presents a small comparative study in which four
of the techniques discussed in the previous section are tested on four
benchmark problems taken from the standard constraint-handling literature
[13]. Section 10.5 discusses the results obtained, and Section 10.6 concludes
and presents some possible paths of future research in this area.

10.2 Basic Concepts

We are interested in the general non-linear programming problem in which
we want to:

Find x which optimizes f(x) (10.1)

subject to:
gi(x) ≤ 0, i = 1, . . . , n (10.2)

hj(x) = 0, j = 1, . . . , p (10.3)

where x is the vector of solutions x = [x1, x2, . . . , xr]T , n is the number of
inequality constraints and p is the number of equality constraints (in both
cases, constraints could be linear or non-linear).

If we denote with F to the feasible region and with S to the whole search
space, then it should be clear that F ⊆ S.

For an inequality constraint that satisfies gi(x) = 0, then we will say that
F is active at x. All equality constraints hj (regardless of the value of x used)
are considered active at all points of F .

Now, we will define some basic concepts from multiobjective optimization.

Definition 1 (General Multiobjective Optimization Problem):
Find the vector x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]T which will satisfy the m inequality

constraints:
gi(x) ≥ 0 i = 1, 2, . . . , m (10.4)

the p equality constraints

hi(x) = 0 i = 1, 2, . . . , p (10.5)

and will optimize the vector function

f(x) = [f1(x), f2(x), . . . , fk(x)]T (10.6)

where x = [x1, x2, . . . , xn]T is the vector of decision variables. �

Having several objective functions, the notion of “optimum” changes,
because in multiobjective optimization problems, the aim is to find good
compromises (or “trade-offs”) rather than a single solution as in global
optimization. The notion of “optimum” that is most commonly adopted is

10 EMO Concepts to Handle Constraints in GAs 231

that originally proposed by Francis Ysidro Edgeworth in 1881 [15]and later
generalized by Vilfredo Pareto (in 1896) [16]. This notion is normally referred
to as “Pareto optimality” and is defined next.

Definition 2 (Pareto Optimality:): A point x∗ ∈ F is Pareto optimal
if for every x ∈ F and I = {1, 2, . . . , k} either,

∀i∈I(fi(x) = fi(x∗)) (10.7)

or, there is at least one i ∈ I such that

fi(x) > fi(x∗) (10.8)

�

In words, this definition says that x∗ is Pareto optimal if there exists
no feasible vector x which would decrease some criterion without causing
a simultaneous increase in at least one other criterion. The phrase “Pareto
optimal” is considered to mean with respect to the entire decision variable
space unless otherwise specified.

Other important definitions associated with Pareto optimality are the
following:

Definition 3 (Pareto Dominance): A vector u = (u1, . . . , uk) is said to
dominate v = (v1, . . . , vk) (denoted by u � v) if and only if u is partially less
than v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. �

Definition 4 (Pareto-optimal Set): For a given multiobjective
optimization problem, f(x), the Pareto optimal set (P∗) is defined as:

P∗ := {x ∈ F | ¬∃ x′ ∈ F f(x′) � f(x)}. (10.9)

�

10.3 Multiobjective-based Constraint Handling
Techniques

The main idea behind using multiobjective techniques to handle constraints
is to redefine the single-objective optimization of f(x) as a multiobjective
optimization problem in which we will have m + 1 objectives, where m
is the total number of constraints. Then, we can apply any multiobjective
optimization technique [1] to the new vector v̄ = (f(x), f1(x), . . . , fm(x)),
where f1(x), . . . , fm(x) are the original constraints of the problem. An ideal
solution x would thus have fi(x)=0 for 1 ≤ i ≤ m and f(x) ≤ f(y) for all
feasible y (assuming minimization).

There are three mechanisms taken from evolutionary multiobjective
optimization that are more frequently incorporated into constraint-handling
techniques:

232 Mezura-Montes and Coello Coello

1. Use of Pareto dominance as a selection criterion.
2. Use of Pareto ranking [17] to assign fitness in such a way that

nondominated individuals (i.e., feasible individuals in this case) are
assigned a higher fitness value.

3. Split the population in subpopulations that are evaluated either with
respect to the objective function or with respect to a single constraint
of the problem. This is the selection mechanism adopted in the Vector
Evaluated Genetic Algorithm (VEGA) [18].

We will now proceed to discuss the different approaches that have been
proposed adopting the three main ideas previously indicated.

10.3.1 COMOGA

Surry and Radcliffe [19] used a combination of the Vector Evaluated Genetic
Algorithm (VEGA)[18] and Pareto Ranking to handle constraints in an
approach called COMOGA (Constrained Optimization by Multi-Objective
Genetic Algorithms).

In this technique, individuals are ranked depending on their sum of
constraint violation (number of individuals dominated by a solution).
However, the selection process is based not only on ranks, but also on the
fitness of each solution. COMOGA uses a non-generational GA and extra
parameters defined by the user (e.g., parameter called ε is used to define the
change rate of Pcost). One of these parameters is Pcost, that sets the rate of
selection based on fitness. The remaining 1 − Pcost individuals are selected
based on ranking values. Pcost is defined by the user at the beginning of the
process and it is adapted during the run using as a basis the percentage of
feasible individuals that one wishes to have in the population.

COMOGA was applied on a gas network design problem and it was
compared against a penalty function approach. Although COMOGA showed
a slight improvement in the results with respect to a penalty function, its
main advantage is that it does not require a fine tuning of penalty factors or
any other additional parameter. The main drawback of COMOGA is that
it requires several extra parameters, although its authors argue that the
technique is not particularly sensitive to their values [19].

The algorithm of COMOGA is as follows [19]:

Begin
1. Calculate constraint violation for all solutions.
2. Rank solutions based on constraint violation (nondominance

checking).
3. Evaluate the fitness of solutions.
4. Select a Pcost proportion of parents based on fitness and

the remaining 1 − Pcost based on constraint ranking.
5. Apply genetic operators

10 EMO Concepts to Handle Constraints in GAs 233

6. Adjust Pcost: Decreasing it favors feasible solutions; Increasing it
favors lower cost solutions (high fitness)

End

10.3.2 VEGA

Parmee and Purchase [20] proposed to use VEGA [18] to guide the search of an
evolutionary algorithm to the feasible region of an optimal gas turbine design
problem with a heavily constrained search space. After having a feasible point,
they generated an optimal hypercube around it in order to avoid leaving the
feasible region after applying the genetic operators. Note that this approach
does not really use Pareto dominance or any other multiobjective optimization
concepts to exploit the search space. Instead, it uses VEGA just to reach the
feasible region. The use of special operators that preserve feasibility make this
approach highly specific to one application domain rather than providing a
general methodology to handle constraints.

Coello [21] used a population-based approach similar to VEGA [18]
to handle constraints in single-objective optimization problems. At each
generation, the population was split into m + 1 subpopulations of equal
fixed size, where m is the number of constraints of the problem. The
additional subpopulation handles the objective function of the problem and
the individuals contained within it are selected based on the unconstrained
objective function value. The m remaining subpopulations take one constraint
of the problem each as their fitness function. The aim is that each of
the subpopulations tries to reach the feasible region corresponding to one
individual constraint. By combining these different subpopulations, the
approach will reach the feasible region of the problem considering all of its
constraints.

The algorithm of this approach is as follows:

Begin
Create M random solutions for the initial population.
Split the population into m + 1 subpopulations
Evaluate all M individuals
Assign a fitness value to all M individuals depending on their
corresponding subpopulation.
While stopping criterion is not satisfied Do

Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p1 and p2 based on tournament selection
with n candidates from all the M individuals of the main
population
Apply crossover to p1 and p2 to generate 2 offspring c1 and c2
Apply mutation to offspring c1 and c2

234 Mezura-Montes and Coello Coello

Insert c1 and c2 into the next population
End While
Split the population into m + 1 subpopulations
Evaluate all M new individuals
Assign a fitness value to all M individuals depending of their
corresponding subpopulation.

End While
End

The fitness assignment scheme of the approach is as follows:

if gj(x) < 0.0 then fitness = gj(x)
else if v �= 0 then fitness = −v
else fitness = f(x)

where gj(x) refers to the jth constraint of the problem, v is the number of
violated constraints (v ≤ m) and f(x) is the value of the objective function
of the individual.

As can be seen above, each subpopulation tries to satisfy one single
constraint. If the encoded solution does not violate the constraint of its
corresponding subpopulation, then the fitness of an individual will be
determined by the total number of constraints violated. Finally, if the solution
is feasible, then the feasible criterion is to optimize the objective function.
Therefore, any feasible individuals will be merged with the subpopulation on
charge of optimizing the original (unconstrained) objective function.

The genetic operators are applied to the entire population and it is
allowed for every individual in a subpopulation to mate with any other in
any subpopulation (including its own, of course). In this way, individuals who
satisfy constraints are combined with individuals with a good fitness value.
At the end, it is expected to have a population of feasible individuals with
high fitness values.

This approach was tested with some engineering problems [21] in which
it produced competitive results. It has also been successfully used to solve
combinational circuit design problems [22]. The main drawback of this
approach is that the number of subpopulations required increases linearly with
the number of constraints of the problem. This has some obvious scalability
problems. Furthermore, it is not clear how to determine appropriate sizes for
each of the subpopulations used.

10.3.3 MOGA

Coello [23] proposed the use of Pareto dominance selection to handle
constraints in EAs. This is an application of Fonseca and Fleming’s Pareto
ranking process [24] (called Multi-Objective Genetic Algorithm, or MOGA) to
constraint-handling. In this approach, feasible individuals are always ranked
higher than infeasible ones. Based on this rank, a fitness value is assigned

10 EMO Concepts to Handle Constraints in GAs 235

to each individual. This technique also includes a self-adaptation mechanism
that avoids the usual empirical fine-tuning of the main genetic operators.

Coello’s approach uses a real-coded GA with universal stochastic sampling
selection (to reduce the selection pressure caused by the Pareto ranking
process).

The algorithm of this approach is as follows:

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
Calculate the rank for each of the M individuals in the population.
Assign a fitness value to all M individuals depending on rank
While stopping criterion is not satisfied Do

Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p1 and p2 using Universal Stochastic
Sampling
Apply crossover to p1 and p2 to generate 2 offspring c1 and c2
Apply mutation to offspring c1 and c2
Insert c1 and c2 into the next population

End While
Evaluate the M new individuals in the population
Calculate the rank for each one of the M individuals in the
population.
Assign a fitness value to all M individuals depending on rank

End While
End

To compute the rank of an individual xi this approach uses the following
procedure:

Evaluate:
rank(xi) = count(xi) + 1 (10.10)

where count(xi) is computed according to the following rules:

1. Compare xi against every other individual in the population. Assuming
pairwise comparisons, we will call xj (j = 1, . . . , pop size and j �= i) the
other individual against which xi is being compared at any given time.

2. Initialize count(xi)(for i = 1, . . . , pop size) to zero.
3. If both xi and xj are feasible, then both are given a rank of zero and

count(xi) remains without changes.
4. If xi is infeasible and xj is feasible, then count(xi) is incremented by one.
5. If both xi and xj are infeasible, but xi violates more constraints than xj ,

then count(xi) is incremented by one.

236 Mezura-Montes and Coello Coello

6. If both xi and xj are infeasible, and both violate the same number of
constraints, but xi has a total amount of constraint violation larger than
the constraint violation of xj , then count(xi) is incremented by one.
If any constraint gk(x) (k = 1, . . . , m, where m is the total amount of
constraints) is considered satisfied if gi(x) ≤ 0, then the total amount of
constraint violation for an individual xi (denoted as coef(xi)) is given by:

coef(xi) =
p∑

k=1

gk(xi) for all gk(xi) > 0 (10.11)

To compute fitness, the following rules are adopted:

1. If xi is feasible, then rank(xi) = fitness(xi), else
2. rank(xi) = 1

rank(xi)

Then, individuals are selected based on rank(xi) (stochastic universal
sampling is used). Note that the values produced by fitness(xi) must be
normalized to ensure that the rank of feasible individuals is always higher
than the rank of infeasible ones.

This approach has been used to solve some engineering design problems
[23] in which it produced very good results. Furthermore, the approach showed
great robustness and a relatively low number of fitness function evaluations
with respect to traditional penalty functions. Additionally, it does not require
any extra parameters. Its main drawback is the computational cost (O(M2),
where M is the population size) derived from the Pareto ranking process.

10.3.4 NPGA

Coello and Mezura [25] implemented a version of the Niched-Pareto Genetic
Algorithm (NPGA) [26] to handle constraints in single-objective optimization
problems. The NPGA is a multiobjective optimization approach in which
individuals are selected through a tournament based on Pareto dominance.
However, unlike the NPGA, Coello and Mezura’s approach does not require
niches (or fitness sharing [27]) to maintain diversity in the population.
The NPGA is a more efficient technique than traditional multiobjective
optimization algorithms, since it does not compare every individual in the
population with respect to each other (as in traditional Pareto ranking), but
uses only a sample of the population to estimate Pareto dominance. This is
the main advantage of this approach with respect to Coello’s proposal [23].

Note, however, that Coello and Mezura’s approach requires an additional
parameter called Sr that controls the diversity of the population. Sr indicates
the proportion of parents selected by four comparison criteria described below.
The remaining 1−Sr parents will be selected by a pure probabilistic approach.
Thus, this mechanism is responsible for keeping infeasible individuals in
the population (i.e., the source of diversity that keeps the algorithm from
converging to a local optimum too early in the evolutionary process).

10 EMO Concepts to Handle Constraints in GAs 237

Pure
Probabilistic
Selection

Candidate 1 Candidate 2

Sr

Four
Comparison
Criteria

Figure 10.1. Diagram that illustrates the role of Sr in the selection process of
Coello and Mezura’s algorithm.

A graphical illustration of the role of the parameter Sr is shown in
Figure 10.1.

Tournaments in this approach are decided using as a basis for comparison
criteria. If:

1. both individuals are feasible, the individual with the higher fitness wins.
2. one is feasible and the other is infeasible, the feasible individual wins.
3. both are infeasible: non-dominance checking is applied (tournament

selection as in the NPGA [26].
4. both are non-dominated or dominated, the individual with the lowest

amount of constraint violation wins.

The algorithm of this approach is as follows:

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
While stopping criterion is not satisfied Do

Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p1 and p2 based on Sr value
Apply crossover to p1 and p2 to generate 2 offspring c1 and c2
Apply mutation to offspring c1 and c2
Insert c1 and c2 into the next population

End While
Evaluate the M new individuals in the population

End While
End

This approach has been tested with several benchmark problems and was
compared against several types of penalty functions [28]. Results indicated
that the approach was robust, efficient, and effective. However, it was also

238 Mezura-Montes and Coello Coello

found that the approach had scalability problems (its performance degrades
as the number of decision variables increases).

10.3.5 Pareto Set and Line Search

Camponogara and Talukdar [29] proposed an approach in which a global
optimization problem was transformed into a bi-objective problem where the
first objective is to optimize the original objective function and the second is
to minimize:

Φ(x) =
n∑

i=1

max(0, gi(x)) (10.12)

Equation 10.12 tries to minimize the total amount of constraint violation of
a solution (i.e., it tries to make it feasible). At each generation of the process,
several Pareto sets are generated. An operator that substitutes crossover takes
two Pareto sets Si and Sj where i < j and two solutions xi ∈ Si and xj ∈ Sj

where xi dominates xj . With these two points a search direction is defined
using:

d =
(xi − xj)
|xi − xj | (10.13)

Line search begins by proyecting d over one variable axis on decision
variable space in order to find a new solution x which dominates both xi

and xj . At pre-defined intervals, the worst half of the population is replaced
with new random soutions to avoid premature convergence. This indicates
some of the problems of the approach to maintain diversity. Additionally, the
use of line search within a GA adds some extra computational cost.

The algorithm is as follows [29]:

Begin
Let S be a random initial population.
Let F = {f0(), . . . , fk()} be a set of objectives to be minimized.
While stopping criterion is not satisfied Do

Let L = {S1, . . . , St} be the Pareto list for S with respect to F
If t = 1 Then

Replace half of the points in S by random points
Rebuild the Pareto List L

End If
Let N = ∅ be the set of new points to be generated
While |N | < m Do

Choose two Pareto sets Si and Sj with i < j
Choose two points sets xi ∈ Si and xj ∈ Sj with i < j

Let d = (xi−xj)
|xi−xj | be the search direction

With probability α project d onto the axis of one variable j in
the solution space
Execute line search through the line defined by the point xi and

10 EMO Concepts to Handle Constraints in GAs 239

by the direction d
Let U = {uo, . . . , uk} be the set of points obtained in the line
search such that uj is the best point with
evaluation fj()
Let N = N

⋃
U

End While
Let S = S

⋃
N

Let L = {S1, . . . , Sl} be the Pareto list for S
Remove |N | points from the last Pareto sets in List L

End While
End

The authors of this approach validated it using a benchmark consisting of
five test functions. The results obtained were either optimal or very close to
it. The main drawback of this approach is its additional computational cost.
Also, it is not clear what is the impact of the segment chosen to search in the
overall performance of the algorithm.

10.3.6 Min-max

An approach similar to a min-max formulation used in multiobjective
optimization [30] combined with tournament selection was proposed by
Jiménez and Verdegay [31].

The algorithm is as follows:

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
While stopping criterion is not satisfied Do

Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p1 and p2 based on tournament selection and
based on the criteria shown below
Apply crossover to p1 and p2 to generate 2 offspring c1 and c2
Apply mutation to offspring c1 and c2
Insert c1 and c2 into the next population

End While
Evaluate the M new individuals in the population

End While
End

The selection criteria is based on the following rules:

• Between two feasible individuals, the one with a higher fitness wins.
• A feasible individual wins over an infeasible individual.

240 Mezura-Montes and Coello Coello

• Between two infeasible individuals, the one with the lowest amount of
constraint violation wins.

This approach was validated using four test functions, and the results
obtained in most cases were very close to the optima. A subtle problem
with this approach is that the evolutionary process first concentrates only
on the constraint satisfaction problem and therefore it samples points in the
feasible region essentially at random [42]. This means that in some cases (e.g.,
when the feasible region is disjoint) we might land in an inappropriate part
of the feasible region from which we will not be able to escape. However, this
approach (as in the case of Parmee and Purchase’s [20] technique) may be a
good alternative to find a feasible point in a heavily constrained search space.
The relative simplicity of this approach is another advantage of this technique.

10.3.7 Pareto Ranking and Domain Knowledge

Ray et al. [33] proposed the use of a Pareto ranking approach that operates on
three spaces: objective space, constraint space and the combination of the two
previous spaces. This approach also uses mating restrictions to ensure better
constraint satisfaction in the offspring generated and a selection process that
eliminates weaknesses in any of these spaces. To maintain diversity, a niche
mechanism based on Euclidean distances is used. This approach can solve
both constrained or unconstrained optimization problems with one or several
objective functions.

The algorithm is as follows [33]:

Begin
Let M be a random initial population.
Do

Compute Pareto Ranking based on objective matrix to yield
a vector RankObj
Compute Pareto Ranking based on constraint matrix to yield
a vector RankCon
Compute Pareto Ranking based on the combined matrix to yield
a vector RankCom
If problem is multiobjective optimization Then

Select individuals from the population in this generation if
RankCom=1 and Feasible and put them into the population for
the next generation

End If
If problem is single objective optimization Then

Select individuals from the population in this generation if
RankCom is better than allowable rank and Feasible
and put them into the population for the next generation

End If

10 EMO Concepts to Handle Constraints in GAs 241

Do
Select an individual A and its partner from the population at
this generation
Mate A with its partner
Put parents and children into the population of the next
generation

While the population is not full
Remove duplicate points in parametric space and shrink population

While the maximum number of generations is not attained
End

From the previous pseudo-code, it can be seen that three different matrices
must be computed: the objective matrix (containing the objective function
values of each solution), the constraint matrix (that contains the constraint
values of each individual), and a matrix that combines the two previous. These
matrices are illustrated in Equations 10.14 - 10.16.⎛

⎜⎜⎜⎝
f11 f12 . . . f1k

f21 f22 . . . f2k

...
...

. . .
...

fM1 fM2 . . . fMk

⎞
⎟⎟⎟⎠ (10.14)

⎛
⎜⎜⎜⎝

c11 c12 . . . c1s

c21 c22 . . . c2s

...
...

. . .
...

cM1 cM2 . . . cMs

⎞
⎟⎟⎟⎠ (10.15)

⎛
⎜⎜⎜⎝

f11 f12 . . . f1k c11 c12 . . . c1s

f21 f22 . . . f2k c21 c22 . . . c2s

...
...

. . .
...

...
...

. . .
...

fM1 fM2 . . . fMk cM1 cM2 . . . cMs

⎞
⎟⎟⎟⎠ (10.16)

The mating restrictions used by this method are based on the information
that each individual has about its own feasibility. Such a scheme is based on
an idea proposed by Hinterding and Michalewicz [34].

The main advantage of this approach is that it requires a very low
number of fitness function evaluations (between 2% and 10% of the number of
evaluations required by the homomorphous maps of Koziel and Michalewicz
[35], which is one of the best constraint-handling techniques known to date).
The technique has some problems to reach the global optima, but it produces
very good approximations considering its low computation cost. The main
drawback of the approach is that its implementation is considerably more
complex than any of the other techniques previously discussed.

242 Mezura-Montes and Coello Coello

10.3.8 Pareto Dominance and Preselection

Jiménez et al. [36] proposed an algorithm that uses Pareto dominance
inside a preselection scheme to solve several types of optimization
problems (multiobjective, constraint satisfaction, global optimization, and
goal programming problems). The approach redefines the problem as an
unconstrained multiobjective optimization problem in which objectives are
given priorities. Feasible solutions with a good objective function value are
given the highest priority. The authors use a real-coded non-generational
GA with two types of crossover operators (uniform and arithmetic) and two
mutation operators (uniform and non-uniform).

The preselection scheme of this approach works as follows [36]:

Begin
At each iteration of the algorithm
select two parents p1 and p2 at random.
Apply the crossover operators NC times to produce NC offspring
Apply the mutation operators to produce a total of 2 × NC offspring
Obtain the best c1 individuals of the first NC
offspring based on Pareto dominance
Obtain the best c2 individuals of the second NC
(mutated) offspring based on Pareto dominance
If c1 dominates p1 Then

c1 replaces p1 in the population
EndIf
If c2 dominates p2 Then

c2 replaces p2 in the population
EndIf

End

The authors argue that this preselection mechanism is an implicit niche
formation technique because individuals are replaced only by similar ones
(i.e., their offspring). As only the best individuals are inserted into the new
population, this scheme is also an elitist strategy.

This approach was validated with eleven test functions, producing very
good results. Note, however, that the authors do not specify the computational
cost of the approach and it is not clear if the approach is competitive with
other techniques in that regard.

10.3.9 Pareto Ranking and Robust Optimization

Ray [37] explored an extension of his previous work on constraint-handling
[33] in which the emphasis was robustness. A robust optimized solution
is not sensitive to parametric variations due to incomplete information of
the problem or to changes on it. This approach is capable of handling
constraints and finds feasible solutions that are robust to parametric variations

10 EMO Concepts to Handle Constraints in GAs 243

produced over time. This is achieved using the individual’s self-feasibility and
its neighborhood feasibility. Thus, a new matrix called “modified constraint
matrix” is used to replace both the constraint matrix and the combined matrix
of Ray’s original proposal (see Equations 10.15 and 10.16). An example of this
modified constraint matrix is the following:⎛

⎜⎜⎜⎝
c11 c12 . . . c1s c1s+1 c1s+2 . . . c12s

c21 c22 . . . c2s c2s+2 c2s+2 . . . c22s

...
...

. . .
...

...
...

. . .
...

cM1 cM2 . . . cMs cMs+1 cMs+2 . . . cM2s

⎞
⎟⎟⎟⎠ (10.17)

where cis+1, cis+2 . . . ci2s denotes the number of violations of the first
constraint among k neighbors and so on. A mechanism based on ranking
values in both spaces (objective space and constraint space) is used to select
the best individuals and copy them into the next population. The remaining
portion of the new population is filled by mating two parents p1 and p2.
One parent (p1) is selected based on a crowding factor using roulette wheel
selection. The partner of this individual (p2) is the result of the competition
between two individuals (A and B) picked up by a roulette wheel selection
process. To decide between A and B in order to obtain p2 the following criteria
are adopted:

1. If A is feasible and B is not: Select A as the partner p2.
2. If B is feasible and A is not: Select B as the partner p2.
3. If both A and B are feasible: Select one with a minimum Rank

Objective. If the Rank Objective of A and B are the same, select
one with the minimum number of neighbors in the parametric space as a
mate.

4. If both A and B are infeasible: Select A or B with a minimum Rank
Constraint. If the Rank Constraints are the same, randomly select
between A and B.

The general algorithm is as follows [37]:

Begin
Let M be a random initial population.
Do

Generate the Objective and Constraint matrices
Rank individuals based on these matrices
Select elite solutions and copy them into the population
to be used in the next generation
Pick an elite individual
Choose its partner
Mate them and generate two children
Put these children into the population
to be used in the next generation

244 Mezura-Montes and Coello Coello

While termination condition=true
End

A real-coded GA with Simulated Binary Crossover [38] was used to
implement this technique. The results reported in two well-known design
problems [37] showed that the proposed approach did not reach solutions
as good as the other techniques against which it was compared, but it turned
out to be less sensitive to parametric variations, which was the main goal of
the approach. In contrast, the other techniques analyzed showed significant
changes when the parameters were perturbed. The main drawback of this
approach is, again, its relative complexity (i.e., its difficulty to implement it),
and it would also be desirable that the approach is further refined so that it
can get closer to the global optimum than the current available version.

10.4 A Small Comparative Study

Four techniques were selected from those discussed before to perform a
small comparative study that aims to illustrate some practical issues of
constraint-handling techniques. The techniques selected are the following:
COMOGA [19], the use of VEGA proposed by Coello [21], the NPGA to
handle constraints [25] and the approach that uses MOGA [23]. In order to
simplify our notation, the last three techniques previously indicated will be
called HCVEGA, HCNPGA, and HCMOGA, respectively.

To evaluate the performance of the techniques selected, we decided to use
two of the well-known benchmarks proposed in Michalewicz and Schoenauer
[13] plus two engineering design problems used in Coello [23]. The full
description of the four test functions is as follows:

1. g04:
Minimize:

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 (10.18)

subject to:

g1(x)= 85.334407+0.0056858x2x5+0.0006262x1x4−0.0022053x3x5−92≤ 0

g2(x)= −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x)= 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(x)= −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(x)= 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x)= −9.300961−0.0047026x3x5−0.0012547x1x3−0.0019085x3x4+20≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5).

10 EMO Concepts to Handle Constraints in GAs 245

2. g11
Minimize:

f(x) = x2
1 + (x2 − 1)2 (10.19)

subject to:

h(x) = x2 − x2
1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1.
3. Design of a Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical heads as
shown in Figure 10.2. The objective is to minimize the total cost, including
the cost of the material, forming, and welding. There are four design
variables: Ts (thickness of the shell), Th (thickness of the head), R (inner
radius) and L (length of the cylindrical section of the vessel, not including
the head). Ts and Th are integer multiples of 0.0625 in., which are the
available thicknesses of rolled steel plates, and R and L are continuous.
Using the same notation given by Kannan and Kramer [39], the problem
can be stated as follows:
Minimize :

F (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (10.20)

Subject to :
g1(x) = −x1 + 0.0193x3 ≤ 0 (10.21)

g2(x) = −x2 + 0.00954x3 ≤ 0 (10.22)

g3(x) = −πx2
3x4 − 4

3
πx3

3 + 1, 296, 000 ≤ 0 (10.23)

g4(x) = x4 − 240 ≤ 0 (10.24)

R

Th

R

sTL

Figure 10.2. Center and end section of the pressure vessel used for the third
example.

246 Mezura-Montes and Coello Coello

6 4 2

360"

 360" 360"

 5 3 1

Figure 10.3. 10-bar plane truss used for the fourth example.

4. Design of a 10-bar plane truss
Consider the 10-bar plane truss shown in Figure 10.3 [40]. The problem is
to find the moment of inertia of each member of this truss, such that we
minimize its weight, subject to stress and displacement constraints. The
weight of the truss is given by:

f(x) =
10∑

j=1

ρ Aj Lj (10.25)

where x is the candidate solution, Aj is the cross-sectional area of the jth
member, Lj is the length of the jth member, and ρ is the weight density
of the material.
The assumed data are: modulus of elasticity, E = 1.0 × 104 ksi 68965.5
MPa), ρ = 0.10 lb/in.3 (2768.096 kg/m3), and a load of 100 kips (45351.47
Kg) in the negative y-direction is applied at nodes 2 and 4. The maximum
allowable stress of each member is called σa, and it is assumed to be ±25
ksi (172.41 MPa). The maximum allowable displacement of each node
(horizontal and vertical) is represented by ua, and it is assumed to be 2
ins. (5.08 cm).
There are 10 stress constraints, and 12 displacement constraints (we
can really assume only 8 displacement constraints because there are two
nodes with zero displacement, but they will nevertheless be considered
as additional constraints). The moment of inertia of each element can be
different, thus the problem has 10 design variables.

To get a measure of the difficulty of solving each of these problems, a ρ
metric (as suggested by Koziel and Michalewicz [35]) was computed using the

10 EMO Concepts to Handle Constraints in GAs 247

following expression:
ρ = |F |/|S| (10.26)

where |F | is the number of feasible solutions and |S| is the total number of
solutions randomly generated. In this work S = 1, 000, 000 random solutions.
The different values of ρ for each of the functions chosen are shown in
Table 10.1, where n is the number of decision variables, LI is the number of
linear inequalities, NI the number of non-linear inequalities, LE is the number
of linear equalities and NE is the number of non-linear equalities. It can be
clearly seen that the second test function should be the most difficult to solve
since it presents the lowest value of ρ.

In our comparative study, we used a binary-coded GA with two-point
crossover and uniform mutation. Equality constraints were transformed into
inequalities using a tolerance value of 0.001 (see Coello [12] for details of this
transformation). The number of fitness function evaluations is the same for
all the approaches under study (80, 000). The parameters adopted for each of
the methods were as follows:

• COMOGA:
– Population size = 200
– Crossover rate = 1.0
– Mutation rate = 0.05
– Desired proportion of feasible solutions = 10%
– ε = 0.01

• HCVEGA:
– Population Size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05
– Tournament size = 5

• HCNPGA:
– Population Size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05
– Size of sample of the population = 10
– Selection ratio = 0.8

Table 10.1. Values of ρ for the four test problems chosen.

Problem n Type of function ρ LI NI LE NE
1 5 quadratic 27.0079% 0 0 4 2
2 2 quadratic 0.0973% 0 1 0 0
3 4 quadratic 39.6762% 0 0 3 1
4 10 non linear 46.8070% 0 0 0 22

248 Mezura-Montes and Coello Coello

• HCMOGA:
– Population size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05

A total of 100 runs per technique per problem were performed. Statistical
results are presented in Tables 10.2- 10.5, where Pi refers to the problem
solved (1 ≤ i ≤ 4), 0.0 ≤ Fp ≤ 1.0 is the average rate of feasible solutions
found during a single run (with respect to the full population).1

10.5 Discussion of Results

Although this study is too limited to derive general conclusions, there are a few
interesting issues that deserve discussion. First, it is important to emphasize
that all of the approaches tested were able to reach the feasible region in
all of the test functions. We also found that HCNPGA was the most robust
approach. This technique was able to find the best results in all of the test
functions, except for g11 in which there was a tie with HCMOGA. Note that
the mean values obtained by the HCNPGA is not always the best of all the
approaches in all of the test functions (see for example g04 and g11), but it
tends to have the lowest standard deviations, which is indicative of a more
robust performance.

Table 10.2. Experimental results using COMOGA with the four test problems.

P COMOGA
Optimal Best Median Mean St. Dev. Worst Fp

P1 -30665.539 -30533.057 -30328.199 -30329.563 74.793290 -30141.033 0.002358
P2 0.750 0.749058 0.749787 0.749829 0.000495 0.751753 0.000286
P3 6059.9463 6369.4282 7889.8389 7795.4115 701.36397 9147.5205 0.003989
P4 5152.6361 6283.1987 6675.1267 6660.4556 126.28925 6968.6274 0.006516

Table 10.3. Experimental results using HCVEGA to handle constraints with the
four test problems.

P HCVEGA
Optimal Best Median Mean St. Dev. Worst Fp

P1 -30665.539 -30647.246 -30628.588 -30628.469 7.877054 -30607.240 0.408108
P2 0.750 0.749621 0.812369 0.798690 0.025821 0.847242 0.011206
P3 6059.9463 6064.7236 6238.4897 6259.9637 170.25402 6820.9448 0.425354
P4 5152.6361 5327.4185 5453.4460 5455.8719 56.744241 5569.2407 0.676408

1Due to format limitations the performance values are rounded off to at most
eight significant digits.

10 EMO Concepts to Handle Constraints in GAs 249

COMOGA presented its best performance in function g11, which is the one
with the most heavily constrained search space. HCMOGA normally presented
the best statistical performance (i.e., lowest standard deviations) of all the
approaches. HCVEGA presented its best performance in g04 but its best
result was still relatively far from the global optimum.

The high selection pressure of the non-generational GA used in COMOGA
made it difficult to avoid premature convergence. This is reflected by the Fp

values produced by this approach, which are lower than those generated by
the three other approaches.

The population-based approach used by the HCVEGA was the most
robust in the test function with the highest number of decision variables.
This seems to suggest that this sort of approach may be more effective in
problems with high dimensionality. In fact, we have found in other studies
that most constraint-handling techniques based on Pareto dominance tend to
degrade their performance as the number of decision variables increases.

HCMOGA performed well in all four problems but its overall performance
was not as good as that of the HCNPGA. However, in problem 4 (g11) the
HCMOGA presented the most consistent behavior and the best solution that
it found was the same as the one produced by the HCNPGA. This seems
to suggest that ranking all the population may be useful to deal with highly
constrained spaces. The obvious drawback is its computational cost.

Dealing with a high number of constraints (e.g., problem 4) was not
difficult for any of the approaches, except for COMOGA which could not
find good results.

Although not conclusive, this study seems to indicate that Pareto
dominance, Pareto ranking and population-based mechanisms are promising

Table 10.4. Experimental results using HCNPGA to handle constraints with the
four test problems.

P HCNPGA
Optimal Best Median Mean St. Dev. Worst Fp

P1 -30665.539 -30661.033 -30635.347 -30630.883 20.466057 -30544.324 0.345432
P2 0.750 0.749001 0.749613 0.753909 0.012147 0.832940 0.025842
P3 6059.9463 6059.9263 6127.6184 6172.5274 123.89755 6845.7705 0.330693
P4 5152.6361 5179.7407 5256.1082 5259.0132 37.658930 5362.8906 0.503566

Table 10.5. Experimental results using HCMOGA to handle constraints with the
four test problems.

P HCMOGA
Optimal Best Median Mean St. Dev. Worst Fp

P1 -30665.539 -30649.959 -30570.755 -30568.918 53.531272 -30414.773 0.344896
P2 0.750 0.749001 0.749155 0.749393 0.000595 0.752445 0.016913
P3 6059.9463 6066.9697 6561.4832 6629.0640 385.11074 7547.4033 0.452672
P4 5152.6361 5336.6187 5745.2383 5748.8395 210.69610 6474.0420 0.603598

250 Mezura-Montes and Coello Coello

approaches to handle constraints. These results also seem to suggest that a
traditional (i.e., generational) GA performs better in optimization problems
than non-generational GAs.

Regarding diversity, the four approaches exhibited a good performance,
which seems to indicate that the search space is well sampled by all of
them. However, note that none of the four approaches could reach the global
optimum. This indicates that further refinements are required to improve the
effectiveness of these approaches.

The use of a sample of the population to determine the Pareto dominance
of an individual was found to be appropriate in this context. This is consistent
with the behavior reported for the NPGA in multiobjective optimization
problems [41]. However, in problems with highly constrained search spaces,
Pareto ranking of the entire population seems to be advantageous. On
the other hand, population-based approaches seem to be less sensitive to
scalability of the decision variable space. An open question is if the advantages
of each of these techniques can be combined into a single approach.

10.6 Conclusions and Future Work

A set of constraint-handling techniques based on multiobjective concepts
were presented in this chapter. In each case, advantages and disadvantages
were discussed. We also presented a small comparative study in which four
of the techniques discussed were implemented and evaluated using four test
functions. Our results provided some insights regarding the behavior of each
type of technique. Note, however, that comparisons with respect to traditional
penalty functions [14,42] and with the most competitive constraint-handling
techniques used with EAs (e.g., stochastic ranking [43], the homomorphous
maps [35], and the adaptive segregational constrained handling evolutionary
algorithm (ASCHEA) [44] are still lacking.

The results obtained seem to indicate that techniques based on
multiobjective optimization can properly deal with constrained search spaces.
However, such results also seem to indicate that additional mechanisms should
be used to improve the effectiveness of these approaches, since they had
obvious difficulties to reach the global optimum in all the test functions used.

Some of the most promising paths of future research in this area are the
following:

• Incorporation of self-adaptation or on-line adaptation to make unnecessary
the fine tuning of additional parameters.

• Exploitation of domain knowledge extracted from the evolutionary process
to improve the results obtained by the EA.

• Hybridization with classical global optimization techniques and/or with
other heuristics.

10 EMO Concepts to Handle Constraints in GAs 251

Acknowledgments

This work is representative of the research performed by the Evolutionary
Computation Group at CINVESTAV-IPN (EVOCINV). The first author
acknowledges support from the Mexican Consejo Nacional de Ciencia y
Tecnoloǵıa (CONACyT) through a scholarship to pursue graduate studies at
CINVESTAV-IPN’s Electrical Engineering Department. The second author
acknowledges support from (CONACyT) through project number 32999-A.

References

1. Coello Coello, CA, Van Veldhuizen, DA and Lamont, GB, Evolutionary
Algorithms for Solving Multi-Objective Problems. New York, Kluwer Academic
Publishers, 2002.

2. Michalewicz, Z, Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Third edition, 1996.

3. Arnold, DV, Noisy Optimization with Evolution Strategies. New York, Kluwer
Academic Publishers, 2002.

4. Butz, MV, Anticipatory Learning Classifier Systems. New York, Kluwer
Academic Publishers, 2001.

5. Goldberg, D, The Design of Innovation. Kluwer Academic Publishers, New
York, June 2002.

6. Cant-Paz, E, Efficient and Accurate Parallel Genetic Algorithms. New York,
Kluwer Academic Publishers, 2000.

7. Branke, J, Evolutionary Optimization in Dynamic Environments. New York,
Kluwer Academic Publishers, 2001.

8. Obayashi, S, Pareto Solutions of Multipoint Design of Supersonic Wings using
Evolutionary Algorithms. In IC Parmee (ed.), Adaptive Computing in Design
and Manufacture V, pp. 3-15, London, Springer-Verlag, 2002.

9. Tesh, K, Atherton, MA, and Collins, MW, Genetic Algorithms Search for Stent
Design Improvements. In IC Parmee (ed.), Adaptive Computing in Design and
Manufacture V, pp. 99-107, London, Springer-Verlag, 2002.

10. Tan, KC, Lee, TH, Cai, J, and Chew, YH, Automating the Drug Scheduling
of Cancer Chemotherapy via Evolutionary Computation. In Proceedings of the
Congress on Evolutionary Computation 2001 (CEC’2001), vol. 2, pp. 908–913,
Piscataway, 2001, IEEE Service Center.

11. Majumdar, NS, and Dasgupta, D, Determining Optimal Configuration for
Turbine Generator Cooler. In Proceedings of the Congress on Evolutionary
Computation 2001 (CEC’2001), vol. 2, pp. 1009-1014, Piscataway, 2001, IEEE
Service Center.

12. Coello Coello, CA, Theoretical and Numerical Constraint Handling Techniques
used with Evolutionary Algorithms: A Survey of the State of the Art. Computer
Methods in Applied Mechanics and Engineering, 2002; 191(11-12): 1245–1287.

13. Michalewicz, Z and Schoenauer, M, Evolutionary Algorithms for Constrained
Parameter Optimization Problems. Evolutionary Computation, 1996; 4(1): 1–32.

14. Smith, AE, and Coit, DW, Constraint Handling Techniques—Penalty
Functions. In Thomas Bäck, DB, Fogel and Michalewicz, Z (eds.) Handbook

252 Mezura-Montes and Coello Coello

of Evolutionary Computation, Chapter C 5.2. Oxford University Press and
Institute of Physics Publishing, 1997.

15. Edgeworth, FY, Mathematical Physics. P. Keagan, London:1881.
16. Pareto, V, Cours D’Economie Politique, vol. I and II. Lausanne, F. Rouge: 1896.
17. Goldberg, DE, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA, Addison-Wesley, 1989.
18. Schaffer, JD, Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms. In Genetic Algorithms and their Applications: Proceedings of the
First International Conference on Genetic Algorithms, pp. 93–100. Lawrence
Erlbaum, 1985.

19. Surry, PD, and Radcliffe, NJ, The COMOGA Method: Constrained
Optimisation by Multiobjective Genetic Algorithms. Control and Cybernetics,
1997; 26(3): 391-412.

20. Parmee, IC, and Purchase, G, The Development of a Directed Genetic Search
Technique for Heavily Constrained Design Spaces, In IC, Parmee (ed.), Adaptive
Computing in Engineering Design and Control-’94, pp. 97–102, Plymouth, UK,
1994. University of Plymouth.

21. Coello Coello, CA, Treating Constraints as Objectives for Single-Objective
Evolutionary Optimization. Engineering Optimization, 2000; 32(3): 275–308.

22. Coello Coello, CA, and Aguirre, AH, Design of Combinational Logic Circuits
through an Evolutionary Multiobjective Optimization Approach. Artificial
Intelligence for Engineering, Design, Analysis and Manufacture, 2002; 16(1):
39–53.

23. Coello Coello, CA, Constraint-handling Using an Evolutionary Multiobjective
Optimization Technique. Civil Engineering and Environmental Systems, 2000;
17: 319–346.

24. Fonseca, CM, and Fleming, PJ, Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. In S Forrest (ed.)
Proceedings of the Fifth International Conference on Genetic Algorithms, pp.
416–423, San Mateo, California, University of Illinois at Urbana-Champaign,
Morgan Kaufmann Publishers, 1993.

25. Coello Coello, CA, and Mezura-Montes, E, Handling Constraints in Genetic
Algorithms Using Dominance-Based Tournaments. In IC Parmee (ed.),
Proceedings of the Fifth International Conference on Adaptive Computing
Design and Manufacture (ACDM 2002), vol. 5, pp. 273–284, University of
Exeter, Devon, UK, Springer-Verlag, 2002.

26. Horn, J, Nafpliotis, N, and Goldberg, DE, A Niched Pareto Genetic Algorithm
for Multiobjective Optimization. In Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, vol. 1, pp. 82–87, Piscataway, New Jersey, June 1994. IEEE Service
Center.

27. Deb, K, and Goldberg, DE, An Investigation of Niche and Species Formation
in Genetic Function Optimization. In JD Schaffer (ed.), Proceedings of the
Third International Conference on Genetic Algorithms, pp. 42–50, San Mateo,
California, George Mason University, Morgan Kaufmann Publishers, 1989.

28. Mezura-Montes, E, Uso de la Técnica Multiobjetivo NPGA para el Manejo
de Restricciones en Algoritmos Genéticos. Master’s thesis, Universidad
Veracruzana, Xalapa, México, 2001 (in Spanish).

29. Camponogara, E, and Talukdar, SN, A Genetic Algorithm for Constrained
and Multiobjective Optimization. In JT Alander (ed.) 3rd Nordic Workshop

10 EMO Concepts to Handle Constraints in GAs 253

on Genetic Algorithms and Their Applications (3NWGA), pp. 49–62, Vaasa,
Finland, University of Vaasa, 1997.

30. Chankong, V and Haimes, YY, Multiobjective Decision Making: Theory and
Methodology. In AP, Sage (ed.), Systems Science and Engineering. North-
Holland, 1983.

31. Jiménez, F and Verdegay, JL, Evolutionary Techniques for Constrained
Optimization Problems. In 7th European Congress on Intelligent Techniques
and Soft Computing (EUFIT’99), Aachen, Germany, 1999. Springer-Verlag.

32. Surry, PD, Radcliffe, NJ, and Boyd, ID, A Multi-Objective Approach to
Constrained Optimisation of Gas Supply Networks : The COMOGA Method. In
TC, Fogarty (ed.) Evolutionary Computing. AISB Workshop. Selected Papers,
Lecture Notes in Computer Science, pp. 166–180. Springer-Verlag, Sheffield,
U.K., 1995.

33. Ray, T, Kang, T, and Chye, SW, An Evolutionary Algorithm for Constrained
Optimization. In D Whitley, D Goldberg, E Cantú-Paz, L Spector, I Parmee,
and H Beyer (eds.), Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2000), pp. 771–777, San Francisco, California, Morgan
Kaufmann, 2000.

34. Hinterding, R, and Michalewicz, Z, Your Brains and My Beauty: Parent
Matching for Constrained Optimisation. In Proceedings of the 5th International
Conference on Evolutionary Computation, pp. 810–815, Anchorage, Alaska,
1998.

35. Koziel, S, and Michalewicz, Z, Evolutionary Algorithms, Homomorphous
Mappings, and Constrained Parameter Optimization. Evolutionary
Computation, 1999; 7(1): 19–44.

36. F, Jiménez, AF, Gómez-Skarmeta, and G, Sánchez, How Evolutionary
Multi-objective Optimization Can Be Used for Goals and Priorities Based
Optimization. In E Alba, F Fernández, JA Gómez, F Herrera, JI Hidalgo,
J Lanchares, JJ Merelo, and JM Sánchez (eds.)Primer Congreso Espaõl de
Algoritmos Evolutivos y Bioinspirados (AEB’02), pp. 460–465, Mérida España,
2002. Universidad de la Extremadura, España.

37. Ray, T, Constraint Robust Optimal Design using a Multiobjective Evolutionary
Algorithm. In Proceedings of the Congress on Evolutionary Computation 2002
(CEC’2002), vol. 1, pp. 419–424, Piscataway, NJ, May 2002. IEEE Service
Center.

38. Deb, K, and Agrawal, RW, Simulated Binary Crossover For Continuous Search
Space. Complex Systems, 1995; 9: 115–148.

39. Kannan, BK, and Kramer, SN, An Augmented Lagrange Multiplier Based
Method for Mixed Integer Discrete Continuous Optimization and Its
Applications to Mechanical Design. Journal of Mechanical Design. Transactions
of the ASME, 1994; 116:318–320.

40. Belegundu, AD, A Study of Mathematical Programming Methods for Structural
Optimization. Department of Civil and Environmental Engineering, University
of Iowa, Iowa, 1982.

41. Coello Coello, CA, A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques. Knowledge and Information Systems.
An International Journal, 1999; 1(3):269–308.

42. Richardson, JT, Palmer, MR, Liepins, G, and Hilliard, M, Some Guidelines for
Genetic Algorithms with Penalty Functions. In JD Schaffer (ed.) Proceedings

254 Mezura-Montes and Coello Coello

of the Third International Conference on Genetic Algorithms (ICGA-89), pp.
191–197, San Mateo, California, June 1989. George Mason University, Morgan
Kaufmann Publishers.

43. Runarsson, TP, and Yao, X, Stochastic Ranking for Constrained Evolutionary
Optimization. IEEE Transactions on Evolutionary Computation, 2000; 4(3):
284–294.

44. Hamida, SB, and Schoenauer, M, An Adaptive Algorithm for Constrained
Optimization Problems. In M Schoenauer, K Deb, G Rudolph, X Yao, E
Lutton, JJ Merelo, and HP Schwefel (eds.), Proceedings of the Parallel Problem
Solving from Nature VI Conference, pp. 529–538, Paris, France, Lecture Notes
in Computer Science No. 1917, Springer, 2000.

11

Multi-criteria Optimization of Finite State
Automata: Maximizing Performance while
Minimizing Description Length

Robert Goldberg and Natalie Hammerman

Summary. This chapter presents a new operator which, when added to a genetic
algorithm (GA), improved the performance of the GA for locating optimal finite
state automata. The new operator (termed MTF) reorganizes a finite state
automaton (FSA) genome during the execution of the genetic algorithm. MTF
systematically renames the states and moves them to the front of the genome.
The operator was tested on the ant trail problem. Across different criteria (failure
rate, processing time to locate a solution, number of generations needed to locate a
solution), the MTF-enhanced GA realized speedups between 110% and 579% over
the non-enhanced version. In addition, the successful FSAs found by the genetic
algorithm augmented with MTF were 25% 46% smaller in size than those found by
the original GA.

11.1 Introduction

The versatility of a finite state automaton (FSA) genome as the operand of
a genetic algorithm (GA) is evident by the different types of applications it
has been used for. Tomita [1] utilized it to locate language acceptors within
a population. MacLennan [2] implemented an FSA genome to study the
development of communication within an evolving population. Jefferson et
al. [3] used the FSA genome to represent a trail following strategy; this was
used as the starting point for the research presented in this chapter.

A genetic algorithm with an FSA genome was implemented to search the
space of FSAs with 32 or fewer states for strategies to traverse an evaporating
chemical trail within a given time frame. The work of Jefferson et al. [3] was
recreated as the benchmark, and then augmented with the new reorganization
operator. Experimentation was carried out with two disjoint seed sets for the
random number generator, three different population sizes, and different loop
limits for the maximum number of generations to be bred.

The rationale for the new reorganization operator is based on the following
observation: because a single FSA can have many different representations by
simply assigning the states different names or numbers, underlying schema

256 Goldberg and Hammerman

that characterize families of finite state automata from their genomes are often
not apparent. The consequence of this is that equivalent FSAs (differing only
by state name) can force related schemata to compete against each other and
hindering the growth of useful schemata from within the genetic algorithm.
To compensate for this disadvantage a new operator MTF was designed. It
systematically reorganizes FSA genomes during GA execution so that the
following two conditions hold true for each member of the current parent
pool:

• equivalent FSAs with the same number of states will have identical
representations, and

• the significant data will reside in contiguous bits at the front of the genome.

Not only does this reorganization avoid competition between equivalent FSAs
with different representations and the same number of states, but it also
reduces schema length [4]. According to schema theory, shorter defining
lengths are more beneficial to the growth of useful schemata [5], which in
turn enhances convergence rates.

The next section describes the benchmark used for the experimentation.
Then in Section 11.3 the new operator is presented. Sections 11.4 and 11.5
describe the results and analysis of the experimentation with/out the new
operator, while the last section gives the conclusions and directions for further
research.

11.2 The Benchmark

This chapter applies the genetic algorithm with a finite state automaton
genome to the trail problem. It is based on the work of Jefferson et al. [3]
and was recreated for the benchmark for the experimentation (of Sections
11.4 and 11.5). The next Section presents the trail problem in general and
then, in Section 11.2.2, specific problem details are provided to understand
how the GA with the FSA genome is applied.

11.2.1 The Problem to be Solved

This section describes the problem that was used to test the effectiveness of
the reorganization algorithm. For the benchmark the work of Jefferson et al.
[3] was recreated. The reader is referred to Figure 11.1 for an illustration of
the trail now described. An ant is positioned facing the first step of the John
Muir Trail. The trail represents an evaporating chemical trail. It is wrapped
around a torroidal grid, which can be represented as a 32 × 32 square grid
with top-bottom/left-right borders adjacency. The numbers in Figure 11.1
indicate the trail steps that have retained their chemical marking; the boxes
with an × represent the trail steps that have lost their chemical marking as a

11 Maximizing Performance of Finite State Automata 257

Figure 11.1. John Muir trail.

result of evaporation. There are 89 marked trail steps and 38 unmarked trail
steps which the ant must navigate in 200 time steps.

The ant is represented as a 32-state FSA. (See the next subsection for
genome description.) A time step represents an application of a transition
rule of the FSA. Based on the present state of the ant and whether the trail
step immediately in front of the ant is marked (FSA input = 1) or unmarked
(input = 0), the ant can turn 90◦ to the right (FSA output = 0) or left
(output = 1), move onto the trail step directly in front (output = 2), or do
nothing (output = 3). An output of 3 permits the ant to change state without
taking any additional action. Initially the ant is positioned in the box with an
S facing the box marked 1 (Figure 11.1). The next subsection describes the
FSA implementation in a genome.

258 Goldberg and Hammerman

11.2.2 An FSA Genome

This section describes the genetic algorithm implemented for the benchmark.
The GA is used to locate an ant (FSA) that can complete the John Muir Trail
(Figure 11.1) within 200 time steps. A 32-state FSA is sufficient to encode
a solution to the trail problem. The reader is now referred to Table 11.1 for
the genome map. The start state can be any one of the 32 states. Thus, bits
0 through 4 of the genome (first data line of Table 11.1) contain the start
state number. Then, each state (including the start state) needs 14 bits to
describe the next state that the automaton will move to state (0-31) and the
corresponding output (0-3) for each input (0 and 1). Hence, 2 inputs × (5 bits
for next state + 2 bits for output) = 14 bits are required. Each line of the
FSA table represents a given state with its next state and output for inputs
0 and 1. In general, for state i ∈ { 0, 1, 2, . . . , 31 } with input j ∈ { 0, 1 },
bits 5+14i+7j through 9+14i+7j of the genome indicate the next state, and
bits 10+14i+7j and 11+14i+7j contain the corresponding output.

Table 11.1. State table of the 32-state/453-bit FSA genome.

INPUT0 INPUT1
Present State Bits for Bits for Bits for Bits for

next state output next state output
Start State
(Bits 0-4) – – – –

0 5 – 9 10 – 11 12 – 16 17 – 18
1 19 – 23 24 – 25 26 – 30 31 – 32

...
...

...
...

i 5+14i – 10+14i – 12+14i – 17+14i –
9+14i 11+14i 16+14i 18+14i

...
...

...
...

30 425 – 429 430 – 431 432 – 436 437 – 438
31 439 – 443 444 – 445 446 – 450 451 – 452

11.2.3 Genetic Algorithm

This section introduces the genetic algorithm that manipulates the genome
pool (termed population) in its search to find a solution to the problem
with best “fitness.” Fitness is a metric on the quality of a particular genome
(solution), and in the context of the trail problem is simply the number of
marked steps of the trail traversed within the given time frame. The genetic
algorithm shell that is used by many researchers is based on Goldberg [5].
The outline now presented also indicates step 3a that will be the insertion

11 Maximizing Performance of Finite State Automata 259

point for the new reorganization operator, MTF. The details of MTF will be
presented in the next section.

The outline of the genetic algorithm is as follows. Step 3a incorporates the
new operator.

1. Generate the initial population.
2. Find the fitness of each member of the present population.
3. Identify the parent pool as the top p percent of the population.

[3a) Apply MTF to each member of the parent pool.]
4. Select mating pairs from the parent pool without regard to fitness.
5. Apply crossover and mutation to produce a single child from each mating

pair.
6. The children bred in steps 3 through 6 become the present population.
7. Repeat from step 2 until a solution is found, or until the loop limit for the

number of generations is reached.

Within the context of FSA genomes (Section 11.2.2), this algorithm
(without Step 3a) will be considered the benchmark of Jefferson et al. [3].
Jefferson et al. initialized the GA with a population of 64K (65,536) randomly
generated FSAs. The fitness of each FSA was the number of distinct marked
steps the ant covered in 200 time steps. Based on this fitness, the top 5%
of each generation was retained to parent the next generation. Once the
parent pool was established, mating pairs were randomly selected from this
pool without regard to fitness. Each mating pair produced a single offspring.
Mutation and crossover were carried out at a rate of 1% per bit on the single
offspring. To implement the per bit crossover rate, one parent was selected
as the initial bit donor. Bits were then copied from the parent genome into
the child genome. A random number was generated as each bit was copied.
When the random number was below 0.9, the bits of the donating parent were
used for the next bit of the child; otherwise, the other parent became the bit
donor for the next bit. Step 3a is not used by the benchmark and refers to
the operator introduced in the next section.

11.3 MTF Operator

In this section, MTF (move to front), the newly designed reorganization
operator, is introduced (Section 11.3.1) and algorithmic details are provided
(Section 11.3.2). MTF was designed to enhance schema growth based on
the schema theory developed by Goldberg [5]; therefore an understanding of
schema theory is critical to understanding why MTF is expected to improve
the efficiency of a GA. The reader is referred to Hammerman and Goldberg [4]
for further elaboration on this matter and a complete C code implementation
of the algorithms presented in this section.

260 Goldberg and Hammerman

11.3.1 The Basis

The finite state automaton M1 of Figure 11.2 is a solution to the trail problem
of Section 11.2.1, as well as any isomorphic automaton differing only in state
names. However, although state 25, for example, could appear in any number
of FSAs isomorphic to M1, it would have very different roles in each of the
corresponding FSAs. There is no apparent useful shared schema when these
two FSAs are represented in the genome of Table 11.1 (Section 11.2.2). Within
a GA these equivalent FSAs would compete against each other to pass their
genetic material onto the next generation instead of supporting each other in
that task.

0/0

�

��

��

� �

����	

��	
 ��	

��	
��	
 ��	

��	
 ��	

.

.

�
�

�
�

���

�
�

�
�

���

�

��

�
�

�
�

�
��	�

�
�

�
��

�

� �

�
�

FSM M1

Start Here

31

28 29

25 26

2423

27

1/2
1/2

1/2

1/2
0/0

0/2

0/0

1/2

0/1

1/2

1/2

1/2

0/2

0/2

0/1

�� �

Figure 11.2. Equivalent FSA solutions to the trail problem.

In general, the genome data for automaton solutions is typically spread
across the whole or almost all of the genome format. By renaming the states
of FSA M1 in Figure 11.2 with numbers 0 through 7, as indicated by FSA
M2 in Figure 11.3 (after applying the MTF operator), all the relevant data
would be moved to the front of the genome, thus inducing useful schemata
less susceptible to disruption due to crossover. Since the automata solutions
to the ant trail problem presented here have 8 states, they need only 3 bits for
determining the start state + 8 states × 2 input values per state × (3 bits for
the next state designation + 2 bits for the output) = 83 bits of the genome,
instead of the full 453 bits originally specified (Table 11.1). This represents
an 82% reduction in genome length. It has been shown [4] that this situation

11 Maximizing Performance of Finite State Automata 261

holds true even with the selection process and per bit crossover implemented
in this study. As a result of the systematic manner in which the states are
renamed, equivalent automata now have identical representations.

0/0

�

��

��

� �

����	

��	
 ��	

��	
��	
 ��	

��	
 ��	

.

.

�
�

�
�

���

�
�

�
�

���

�

��

�
�

�
�

�
��	�

�
�

�
��

�

� �

�
�

FSM M2

Start Here

0

2 1

5 4

67

3

1/2
1/2

1/2

1/2
0/0

0/2

0/0

1/2

0/1

1/2

1/2

1/2

0/2

0/2

0/1

�� �

Figure 11.3. FSA of Figure 11.2 after MTF.

11.3.2 Algorithmic Details

The Java code in Figure 11.4 presents the details of the MTF algorithm.
Within the figure, procedures interchange next states and outputs and
change states in next state part of table implement the renaming
of individual states and thus each have two states as arguments. Procedure
interchange next states and outputs exchanges the 14 bits of genome
data for the two states in its arguments. Procedure change states in
next state part of table scans the next state parts of the FSA table
for its two arguments; if either of the arguments appears, the state found
is replaced with the other one in order to reflect the interchange of the two
states. MTF performs a breadth-first search on the graph induced by the FSA
table. It reassigns state numbers sequentially starting with state 0 for the start
state (line 4 of Figure 11.4). As states are processed, they are entered into a
FIFO (first-in, first-out) QUEUE. The reader may be interested in comparing
FSA M1 in Figure 11.2 with FSA M2 of Figure 11.3 to understand how this
operator works. Figure 11.4 presents Java code for the MTF operator and is
now analyzed.

262 Goldberg and Hammerman

1. public void MTF (Automata FSA)
2. { // begin MTF

3. // START STATE conventionally set to zero.
4. START STATE = 0;
5. NEXT AVAILABLE STATE = 1;
6. interchange next states and outputs
7. (START STATE, FSA.START STATE);
8. change states in next state part of table
9. (START STATE, FSA.START STATE);

10. QUEUE.initialize();
11. QUEUE.add(START STATE);

12. // PROCESS THE FSA
13. while (!QUEUE.empty())
14. { // begin while loop

15. CURRENT STATE = QUEUE.remove();

16. for (INPUT = 0; INPUT < FSA.NUM OF INPUTS; INPUT++)
17. { // begin for loop

18. NEXT STATE =
19. FSA.STATE TABLE[CURRENT STATE, INPUT];

20. if (NEXT STATE >= NEXT AVAILABLE STATE) // ≥
21. { // begin if ≥

22. if (NEXT STATE > NEXT AVAILABLE STATE) then
23. { // begin if >

24. interchange next states and outputs
25. (NEXT STATE, NEXT AVAILABLE STATE);
26. change states in next state part of table
27. (NEXT STATE, NEXT AVAILABLE STATE);

28. } // if (NEXT STATE > NEXT AVAILABLE STATE)

29. QUEUE.add(NEXT AVAILABLE STATE);
30. NEXT AVAILABLE STATE++; // increment

31. } // if (NEXT STATE ≥ NEXT AVAILABLE STATE)

32. } // for INPUT

33. } // while (!QUEUE.empty())

34. } // MTF

Figure 11.4. Java code for the MTF algorithm.

11 Maximizing Performance of Finite State Automata 263

States are only processed once. Processing a state means to reassign the
state number with the next state number available. The data for the old and
new state names are exchanged in the state table. Because new state numbers
are assigned sequentially, it is easy to determine whether a state has already
been reassigned: namely, if a state number in the FSA table is less than the
next number available for state reassignment, then the state in the FSA table
has previously been processed by the algorithm (tested by the inequality in
line 20 of Figure 11.4.) When the state numbers are not the same, the old and
new states are exchanged. This requires two steps. First, the 14 bits of data
for the two states are exchanged by procedure interchange next states
and outputs (lines 6-7 for state 0 and lines 24-25 for the other states, Figure
11.4). Second, every occurrence of either state in the next state part of the
table must be replaced with the other one by procedure change states
in next state part of table (lines 8-9 and 26-27 of Figure 11.4.) One
last step is necessary whether or not the old and new state numbers are
the same. The new state number must be added to the QUEUE (lines 11
and 29 of figure 11.4) so its next states can be processed in turn, and the
NEXT AVAILABLE STATE is then incremented to the “next available
state” (lines 5 and 30 of Figure 11.4).

MTF starts by renaming the start state as state 0 (line 4). State 0 is
processed (lines 6-9) and placed on the QUEUE (lines 10-11). As long as
the QUEUE is not empty (line 13), a state is removed from the QUEUE
(line 15) and its next states are processed (lines 16-32) if they have not yet
been processed (line 20). MTF terminates when all of the FSA states have
been processed, that is, when the QUEUE is empty (line 13). The reader
is referred to [4] for a C implementation of the entire algorithm, and for an
example of a step-by-step walk-through of the algorithm as it is applied to a
given FSA.

It is only necessary to reorganize the top 5% of the population, which forms
the parent pool. MTF was designed to enhance schema retention and growth
during the crossover operation; hence the 95% of the population, which is not
used to form the next generation, is thus left alone.

The beginning of this section gave a motivation for the MTF operator
based on an empirical example showing how equivalent automata can compete
with each other instead of supporting the underlying similar schemata. The
next section provides experiment results that support this supposition.

11.4 Experimentation and Results

In order to determine the effects of the MTF operator on the Jefferson
et al. GA [3], two types of experiments were carried out. The first set of
experiments (this section) was designed to track the evolutionary process
and the second set of experiments (next section) explored the efficiency of
B and MTF. The genome of Section 11.2.2 was used within the context of the

264 Goldberg and Hammerman

genetic algorithm presented in Section 11.2.3 (benchmark) and augmented
with the MTF operator (Section 11.3). For simplicity, the GA used for this
study randomly generated 57 bytes (with values of 0 through 255) for each
individual of generation 0; the three extra bits for each individual resulting
from this method were discarded. (Jefferson et al. randomly generated
individual bits for each genome.) In this section and next, the different
types of experimentation/data collection are described and the results are
presented. Data was collected for the benchmark (also referred to as algorithm
B), and the benchmark augmented with the MTF reorganization algorithm
(henceforth called algorithm MTF).

11.4.1 Tracking the Evolutionary Process

The first set of experiments was designed to track the evolutionary process.
For these experiments, data were collected for each generation. Experiments
were conducted using populations of 64K and 16K FSAs. Define maxgen
as the maximum number of generations that the GA will be permitted to
breed. For the 64K population maxgen was set to 70 generations; for the 16K,
maxgen was 125 generations. In both sets of data, the GA was allowed to breed
maxgen generations for evolutionary tracking, regardless of whether a solution
was found prior to generation maxgen. (A solution is defined as an FSA
which completely traverses the trail within the given time frame.) For each
population size (64K and 16K) and each method (B and MTF), 30 runs were
executed. For all experiments, run number i used the same seed for the random
number generator; and, thus for each population size, run i started with the
same initial population. The maximum fitness appearing in each generation
of each run was recorded. Then for each population size/method/generation
triplet, the maximum fitness was averaged over the 30 runs.

11.4.2 Results of the Experimentation

Figures 11.5 and 11.6 contain the data for the experiments using the 64K
and 16K size populations respectively. In both cases, MTF attains a higher
maximum fitness average per generation than the benchmark in the early
generations. Although both methods are heading towards the maximum
attainable value of 89, MTF moves the population fitnesses towards that value
at a faster pace. Thus, the graphs in Figures 11.5 (64K, 70 generations) and
11.6 (16K, 125 generations) indicate that when MTF was incorporated into
the GA, the evolutionary process was more efficient in moving towards more-
fit individuals.

While these data are encouraging, the purpose of the GA is to locate a
solution and the “efficiency” in locating a solution is the primary concern.
Efficiency can be measured by the number of generations or by the amount of
processor time an algorithm uses to locate a solution. In addition, the number
of failed runs should be taken into account. These issues are discussed in the
next section.

11 Maximizing Performance of Finite State Automata 265

Figure 11.5. Comparison of B and MTF. Population size is 64K. The maximum
fitness is the average over 30 runs of the maximum fitnesses for each generation.

11.5 Efficiency of MTF

In this section an additional set of experiments is discussed to determine the
effect of MTF on the efficiency of the GA in locating a solution. During this
experimentation it was observed that MTF exhibited solutions with fewer
states, so this issue was also explored. The next three subsections describe
the experimentation (Section 11.5.1), the criteria used to compare the results
(Section 11.5.2), and the results obtained from these experiments (Section
11.5.3).

11.5.1 Further Experimentation

This subsection describes the experiments carried out to study the effect
of MTF on convergence and automaton size. For this set of experiments,
three population sizes were used: 64K, 32K, and 16K. For the experiments
implementing a population size of 64K FSAs, data were collected for maxgen
= 50, 60, and 70, where maxgen is the loop limit for the number of generations

266 Goldberg and Hammerman

Figure 11.6. Comparison of B and MTF. Population size is 16K. The maximum
fitness is the average over 30 runs of the maximum fitnesses for each generation.

bred. For the 32K population, data for maxgen = 75 and 100 were recorded,
and for 16K, the values of maxgen were 100 and 125. The GA was halted when
a solution was located (an FSA which covered all 89 marked steps within the
given time frame) or if maxgen was reached.

For each method/population size pair, two disjoint sets of seeds were used.
One set consisted of the 30 seeds that were used to track the evolutionary
process. The other set consisted of 100 new seeds. The results for the 30
original seeds were considered separately because of the additional data
available (Section 11.4.1) for this seed set. For all of the other experiments,
run i for a seed set started with the same seed for the random number
generator regardless of the context of the run. Hence, for a given population
size and given seed set, run i started with the same initial population. For each
method/population size/seed/maxgen quadruple, for those runs which find a
solution before or by generation maxgen, the generation number in which
the solution was found and the smallest number of states in the solutions
located were saved along with the processor time for the run. The next

11 Maximizing Performance of Finite State Automata 267

subsection describes the different criteria used to evaluate the results of these
experiments.

11.5.2 Criteria for Evaluation

This subsection describes the criteria used to compare the convergence
performance of the two methods (B and MTF). To determine how MTF
affects the efficiency of the GA, the evaluation of the data was based on
different criteria. The speedup is calculated for given measures (number of
generations, processor time, number of runs). Formally, speedup is defined
as VB/VMTF where VB is the value of the measure for the benchmark, and
VMTF is the value of the measure for MTF [1]. A U-test (also called the Mann-
Whitney or Wilcoxon test [7], is used to obtain a degree of confidence that
MTF is more efficient than the benchmark for averages over the successful
runs.

The criteria for evaluation are as follows:

Average: GAV is the average number of generations the GA bred in order to
locate a solution, and TAV :S is the corresponding average processor time.
These averages are taken over the S successful runs for a given experiment
for a seed set consisting of n seeds. Speedups for GAV and TAV : S are
calculated and a U-test is implemented.

Failed Runs: F = n-S is the number of runs which did not find a solution
by generation maxgen. With probability z, K = log(1-z)/log(F/n) is the
number of independent runs (on the average) that the GA is expected to
execute to locate an FSA which can traverse the complete trail within the
given time frame [8]. K is then used to calculate the speedup. For this
study, z was set to 0.99.

Another issue is the percentage decrease in the average size of the
successful FSAs for MTF with respect to the benchmark. In the next
subsection these results are presented.

11.5.3 The Results

The computed results based on the data collection and criteria described in
the previous two subsections are presented in this subsection and summarized
in Tables 11.2 and 11.3. In all cases MTF surpasses the performance of the
benchmark, with a high degree of confidence when the U-test is applicable.
The number of failures, F, is used to find K (Section 11.5.2), the number of
independent runs expected to be executed. z, the probability that a solution
will be found in K runs, was set to 0.99. Across the experiments, the speedups
of MTF over B, based on K, fall between 1.37 and 5.79 (Figure 7.9). For GAV ,
the average generation in which a solution is found, the speedups vary from a
low of 1.10 to a high of 1.53. Due to the allocation of system resources, reliable
timing data is available only for the 30-seed/16K population experiments. The

268 Goldberg and Hammerman

speedup based on TAV :S for maxgen = 100 is 1.26, and for maxgen = 125 this
speedup is 1.27, where maxgen is the loop limit for the last generation to be
bred. In both cases the U-test degree of confidence that MTF is better than
B is 0.999. This available timing data indicates that MTF is more efficient
than the benchmark in locating a successful FSA, but the speedups are less
than for the corresponding values for the number of generations due to the
additional work that MTF does to reorganize the FSAs in the parent pool.

Table 11.2. Experiment results to determine efficiency. maxgen is the loop limit
for the last generation to be bred. The U-test indicates the degree of confidence
that MTF is better than B. When this number is missing there are an insufficient
number of data points to apply the U-test.

Seeds:
Pop. Size:
Max Gen. FB FMTF KB KMTF

Speedup
based
on K

GAV
B

GAV
MTF

Speedup
based

on GAV

U–test
degree of
confidence
for GAV

30:64K:50 24 12 20.64 5.03 4.11 46.67 41.06 1.14 –
30:64K:60 21 9 12.91 3.82 3.38 49.89 42.95 1.16 0.99
30:64K:70 16 8 7.33 3.48 2.1 55.36 44.05 1.26 0.999
30:32K:75 17 8 8.11 3.48 2.33 62.15 45.27 1.37 0.999
30:32K:100 13 8 5.51 3.48 1.58 69.41 45.27 1.53 0.999
30:16K:100 20 12 11.36 5.03 2.26 79 59.06 1.34 0.99
30:16K:125 17 10 8.11 4.19 1.93 86.62 64.2 1.35 0.99

100:64K:50 85 39 28.34 4.89 5.79 43 39.1 1.1 0.98
100:64K:60 60 36 9.02 4.51 2 50.8 39.77 1.28 0.999
100:64K:70 44 29 5.61 3.72 1.51 54.52 42.13 1.29 0.999
100:32K:75 66 37 11.08 4.63 2.39 57.68 48.14 1.2 0.999
100:32K:100 48 30 6.27 3.82 1.64 68.62 51.79 1.33 0.999
100:16K:100 62 49 9.63 6.46 1.49 67.82 59.1 1.15 0.98
100:16K:125 54 43 7.47 5.46 1.37 75.7 65.05 1.16 0.98

With respect to automaton size, MTF consistently located smaller
solutions than the benchmark. The data indicate (Table 11.3) that the average
number of states of the successful FSAs located by MTF uses just over a third
of the number of states allowed, and hence just a little more than the front
third of the genome. The next section summarizes the conclusions of the two
different types of experiments.

11.6 Conclusions and Further Directions

Jefferson et al. [3] used an FSA genome as the operand of a genetic algorithm
to find a strategy that would traverse the John Muir Trail (Figure 11.1)
within a given number of time steps. Their GA did locate such an FSA, but
that approach did not seem to readily enhance schema growth. To promote

11 Maximizing Performance of Finite State Automata 269

Table 11.3. Experiment results with respect to automaton size. maxgen is the loop
limit for the last generation to be bred. The U-test indicates the degree of confidence
that MTF is better than B. When this number is missing there are an insufficient
number of data points to apply the U-test.

Seed set
:

Population Size
:

maxgen

Average
machine size
(# of states)

for B

Average
machine size
(# of states)

for MTF

Machine Size
(# of states):

percent decrease
of MTF

with respect to B

U–test
degree of
confidence
for percent
decrease

30 : 64K : 50 17.17 12.78 25.57% –
30 : 64K : 60 17.89 13.05 27.05% 0.99
30 : 64K : 70 18.71 12.95 30.79% 0.999
30 : 32K : 75 21 11.32 46.10% 0.999
30 : 32K : 100 19.94 11.32 43.23% 0.999
30 : 16K : 100 22.2 12.89 41.94% 0.999
30 : 16K : 125 21.15 12.65 40.19% 0.999

100 : 64K : 50 20.27 12.56 38.04% 0.999
100 : 64K : 60 18.98 12.61 33.56% 0.999
100 : 64K : 70 18.27 12.7 30.49% 0.999
100 : 32K : 75 19.24 13.46 30.04% 0.999
100 : 32K : 100 18.79 13.51 28.10% 0.999
100 : 16K : 100 18.53 12.73 31.30% 0.999
100 : 16K : 125 19.41 12.51 35.55% 0.999

such growth in the Jefferson et al. model, a new operator was designed and
incorporated into this model.

MTF, the new operator, reorganizes an FSA genome. It sets the start state
of a given finite state automaton to 0, and sequentially renames (reassigns) the
next states of the FSA. This reorganization is applied to the parent pool while
the GA is executing and results in the following: (1) equivalent FSAs with
the same number of states having identical representations, and (2) relevant
data compressed into a shorter bitstring thus yielding schemata with shorter
defining lengths.

Two different types of experiments were undertaken. The first set of
experiments tracked the evolutionary process by recording data for each
generation and averaging the results over 30 runs. Experimentation was
carried out for two different population sizes. The second set of experiments
was designed to determine the efficiency of the MTF-enhanced GA. Efficiency
is determined by the number of generations needed to locate a solution, the
processor time needed to find a solution, and the success/failure rate. In
addition, it was suspected that MTF would locate smaller solutions. For this
second set of experiments, data were collected with respect to the termination
of each run (success or failure in finding a solution, number of generations bred
by the run, processor time of the run, and number of states in the smallest
successful FSA.) This second set of experiments was carried out using two
disjoint seed sets, and three different population sizes.

270 Goldberg and Hammerman

Based on the results of the experimentation (Sections 11.4 and 11.5), it
was found that incorporating MTF into a GA had three positive effects:

• It sped up the evolutionary process (Section 11.4.1).
• It found solutions faster (Section 11.5.3).
• It located solutions with fewer states (Section 11.5.3).

While the specific results varied with different parameter values,
incorporating MTF into the GA improves efficiency and induces smaller
solutions across different population sizes and different values of maxgen. It
would be interesting to track the progression of automaton genomes in terms
of fitness and description length from generation to generation. This could
possibly give extra insight into the positive effect MTF has on an FSA genome
population.

Acknowledgments

This chapter is dedicated to the memory of Jacob Shapiro, a colleague
and mentor. This chapter is the third in a series representing the ongoing
collaborative research on new operators for genetic algorithms. Partial support
is acknowledged from PSC-CUNY research awards.

References

1. Angeline, PJ, and Pollack, JB, Evolutionary Module Acquisition. In DB Fogel
and W Atmar (eds.) Proceedings of the Second Annual Confer- ence on
Evolutionary Programming, pp. 154-163, Palo Alto, California, 1993. Morgan
Kaufmann Publishers.

2. Freund, JE, Mathematical Statistics with Applications, Seventh Edition.
Englewood Cliffs, NJ, Prentice Hall, 2003.

3. Goldberg, DE. Genetic Algorithms in Search, Optimization and Machine
Learning, Reading, MA, Addison-Wesley, 1989.

4. Hammerman, N and Goldberg, R, Algorithms to Improve the Convergence of
a Genetic Algorithm with a Finite State Machine Genome, In LD Chambers
(ed.) The Practical Handbook of Genetic Algorithms Vol III: Complex Coding
Systems, pp. 119-238. CRC Press, Boca Raton, Florida, 1999.

5. Jefferson, D, Collins, R, Cooper, C, Dyer, M, Flowers, M, Korf, R, Taylor, C, and
Wang, A. Evolution as a Theme in Artificial life: The Genesys/Tracker System,
In CG Langton, C Taylor, JD Farmer, and S Rasmussen (eds.) Artificial Life
II, pp. 549-578, Reading, MA, Addison-Wesley, 1992.

6. Koza, JR, Genetic Evolution and Co-evolution of Computer Programs. In CG
Langton, C Taylor, JD Farmer, and S Rasmussen (eds.) Artificial Life II, pp.
603-629, Reading, MA, Addison-Wesley, 1992.

7. MacLennan, B, Synthetic Ethology: An Approach to the Study of
Communication. In CG Langton, C Taylor, JD Farmer, and S Rasmussen (eds.)
Artificial Life II, pp. 631-658, Reading, MA, Addison-Wesley, 1992.

11 Maximizing Performance of Finite State Automata 271

8. Tomita, M, Dynamic Construction of Finite Automata from Examples Using
Hill-climbing. In DB Fogel and W Atmar (eds.) Proceedings of the Fourth
Annual Conference of the Cognitive Science Society, pp. 105-108, Ann Arbor,
MI, The Cognitive Science Society, 1982.

12

Multiobjective Optimization of Space
Structures under Static and Seismic Loading
Conditions

Nikos D. Lagaros, Manolis Papadrakakis, and Vagelis Plevris

Summary. This chapter presents a evolution strategies approach for multiobjective
design optimization of structural problems such as space frames and multi-layered
space trusses under static and seismic loading conditions. A rigorous approach and
a simplified one with respect to the loading condition are implemented for finding
optimal design of a structure under multiple objectives.

12.1 Introduction

In single-objective optimization problems the optimal solution is usually
clearly defined, this does not hold in real-world problems having multiple
and conflicting objectives. Instead of a single optimal solution, there is rather
a set of alternative solutions, generally denoted as the set of Pareto-optimal
solutions. These solutions are optimal in the wider sense that no other solution
in the search space is superior to them when all objectives are considered.
In the absence of preference information, none of the corresponding trade-
offs can be said to be better than the others. On the other hand, the
search space can be too large and too complex, which, the usual case
of real-world problems, to be solved by the conventional deterministic
optimizers. Thus, efficient optimization strategies are required that are able
to deal with the multiple objectives and the complexity of the search space.
Evolutionary Algorithms (EAs) have several characteristics that are desirable
for this kind of problems and most frequently outperform the deterministic
optimizers. The application of EA in multiobjective optimization problems has
received considerable attention in the last five years due to the difficulty of
conventional optimization techniques, such as the gradient-based optimizers,
to be extended to multi-objective optimization problems. For dealing with the
multi-objective optimization problems there are some typical methods, such as
linear weighting method, distance function method and constraint method. In
treating such a problem using gradient based optimizers, we have to combine
them with the typical methods. On the other hand, the structure of the EA

274 Lagaros et al.

optimizers have been recognized to be more appropriate to multiobjective
optimization problems since early in their development [1]. EA optimizers
employ multiple individuals that can search for multiple solutions in parallel.
Using some modifications on the operators used by the EA optimizers the
search process can be driven to a family of solutions representing the set of
Pareto-optimal solutions.

Structural sizing optimization at its early stages of development was
mainly single-objective. The aim was to minimize the weight of the structure
under certain restrictions imposed by design codes. Although some work
has been published in the past dealing with multi-objective optimization [2-
7] this was restricted to simple academic examples. Optimization of large-
scale structures, such as sizing optimization of multi-storey 3D frames and
trusses is a computationally intensive task. The optimization problem becomes
more intensive when dynamic loading is involved [8]. The feasible design
space in structural optimization problems under dynamic constraints is often
disconnected or disjoint [9, 10] which causes difficulties for many conventional
optimizers. Due to the uncertain nature of the seismic loading, structural
designs are often based on design response spectra of the region and on
some simplified assumptions of the structural behavior under earthquakes.
In the case of a direct consideration of the seismic loading the optimization of
structural systems requires the solution of the dynamic equations of motion
which can be orders of magnitude more computationally intensive than the
case of static loading.

In this work, both the rigorous approach and the simplified one with
respect to the loading condition are implemented and their efficiency is
compared in the framework of finding the optimum design of a structure
under multiple objectives. In the context of the rigorous approach a number of
artificial accelerograms are produced from the design response spectrum of the
region for elastic structural response, which constitutes the multiple loading
conditions under which the structures are optimally designed. The elastic
design response spectrum can be seen as an envelope of response spectra,
for a specific damping ratio, of different earthquakes most likely to occur in
the region. This approach is compared with the approximate one based on
simplifications adopted by the seismic codes. The Pareto sets obtained for a
characteristic problem indicate the difference of the two Pareto sets obtained
by the rigorous approach and the simplified one.

12.2 Single-objective Structural Optimization

In sizing optimization problems the aim is to minimize a single-objective
function, usually the weight of the structure, under certain behavioral
constraints on stress and displacements. The design variables are most
frequently chosen to be dimensions of the cross-sectional areas of the members
of the structure. Due to fabrication limitations the design variables are not

12 Multi-Objective Structural Optimization under Seismic Loading 275

continuous but discrete since cross-sections belong to a certain set. A discrete
structural optimization problem can be formulated in the following form:

min f(s)
subject to gj(s) ≤ 0 j = 1, . . . , k

si ∈ Rd, i = 1, . . . , n
(12.1)

where Rd is a given set of discrete values and the design variables si (i =
1, . . . , n) can take values only from this set.

In the optimal design of 3D frames and trusses the constraints are
the member stresses and nodal displacements or inter-storey drifts. For
rigid frames with I-shapes, the stress constraints, under allowable stress
design requirements specified by Eurocode 3 [11] are expressed by the non-
dimensional ratio q of the following formulas

q =
fa

σa
+

fy
b

σy
b

+
fz

b

σz
b

≤ 1.0 if
fa

σa
≤ 0.15 (12.2)

and

q =
fa

0.60 × σy
+

fy
b

σy
b

+
fz

b

σz
b

≤ 1.0 if
fa

σa
> 0.15 (12.3)

where fa is the computed compressive axial stress, fy
b , fz

b are the computed
bending stresses for y and z axis, respectively. σa is the allowable compressive
axial stress, σy

b , σz
b are the allowable bending stresses for y and z axis,

respectively, and σy is the yield stress of the steel. The allowable inter-storey
drift is limited to 1.5% of the height of each storey.

Space truss structures usually have the topology of single or multi-layered
flat or curved grids that can be easily constructed in practice. Most frequently
the constraints are the member stresses, nodal displacements, or frequencies.
The stress constraints can be written as |σ| ≤ |σa|, where σ is the maximum
axial stress in each element group for all loading cases, σa = 0.60 × σy is the
allowable axial stress and σy is the yield stress. Similarly, the displacement
constraints can be written as |d| ≤ da, where da is the limiting value of the
displacement at a certain node, or the maximum nodal displacement.

Euler buckling occurs in truss structures when the magnitude of a
member’s compressive stress is greater than a critical stress that, for the first
buckling mode of a pin-connected member, is equal to

σb =
Pb

A
= − 1

A

(π2EI

L2

)
(12.4)

where Pb is the computed compressive axial force, I is the moment of inertia, L
is the member length. Thus, the compressive stress should be less (in absolute
values) than the critical Euler buckling stress |σ| ≤ |σb|. The values of the
constraint functions are normalized in order to improve the performance of
the optimization procedure as: σ/σa ≤ 1 for tension member σa = 0.60 × σy,

σ/σb ≤ 1 for compression member σb = E
(
π/(l/r)

)2
and d/da ≤ 1.

276 Lagaros et al.

The sizing optimization methodology with EA proceeds using the following
steps: (1) At the outset of the optimization the geometry, the boundaries and
the loads of the structure under investigation have to be defined. (2) The
design variables, which may or may not be independent to each other, are also
properly selected. Furthermore, the constraints are also defined in this stage in
order to formulate the optimization problem as in (12.1). (3) A finite element
analysis is then carried out and the displacements and stresses are evaluated.
(4) The design variables are being optimized using the selection, crossover and
mutation operators. If the convergence criteria for the optimization algorithm
are satisfied, then the optimum solution has been found and the process is
terminated, else the optimizer updates the design variable values and the
whole process is repeated from Step (3).

12.3 Multiobjective Structural Optimization

In practical applications of structural optimization of 3D frames and trusses
the weight rarely gives a representative measure of the performance of the
structure. In fact, several conflicting and incommensurable criteria usually
exist in real-life design problems that have to be dealt simultaneously.
This situation forces the engineer to look for a good compromise
design between the conflicting requirements. These kinds of problems are
called optimization problems with many objectives. The consideration of
multiobjective optimization in its present sense originated towards the end
of the last century when Pareto presented the optimality concept in economic
problems with several competing criteria [12]. The first applications in the field
of structural optimization with multiple objectives appeared at the end of the
seventies [2-7]. Since then, although many techniques have been developed
in order to deal with multiobjective optimization problems and a number
of structural optimization problems have been dealt with multiobjectives,
the corresponding applications were confined to mathematical functions or
Pareto-structural optimization problems under only static loading conditions
[13-21].

12.3.1 Criteria and Conflict

Any engineer who looks for the optimum design of a structure is faced
with the question of which criteria are suitable for measuring the economy,
the performance, the strength and the serviceability of a structure. Any
quantity that, when changed, has a direct influence on the economy and/or
the performance, the strength and the serviceability of the structure, can be
considered as a criterion. On the other hand, those quantities that must only
satisfy some imposed requirements are not criteria but they can be treated
as constraints. Most of the commonly used design quantities have a criterion
nature rather than a constraint nature because in the engineer’s mind these

12 Multi-Objective Structural Optimization under Seismic Loading 277

should take the minimum or maximum possible values. Most of the structural
optimization problems are treated with a single objective, usually the weight
of the structure, subjected to some strength constraints. These constraints are
set as equality or inequality constraints using some upper and lower limits.
Some times there is a difficulty in selecting these limits and these parameters
are treated as criteria.

One important basic property in the multi-criterion formulation is the
conflict that may or may not exist between the criteria. Only those quantities
that are competing should be treated as independent criteria whereas the
others can be combined into a single criterion to represent the whole group.
The concept of the conflict has deserved only a little attention in the literature
while on the contrary the solution procedures have been studied to a great
extent. According to the latter presentation the local conflict between two
criteria can be defined as follows: The functions fi and fj are called locally
collinear with no conflict at point s if there is c > 0 such that ∇fi(s) =
c∇fj(s). Otherwise, the functions are called locally conflicting at s.

According to the previous definition any two criteria are locally conflicting
at a point of the design space if their maximum improvement is achieved in
different directions. The global conflict between two criteria can be defined as
follows: The functions fi and fj are called globally conflicting in the feasible
region � of the design space when the two optimization problems mins∈	 fi(s)
and mins∈	 fj(s) have different optimal solutions.

12.3.2 Formulation of a Multiple Objective Optimization Problem

In formulating an optimization problem the choice of the design variables,
criteria and constraints certainly represents the most important decision made
by the engineer. The designs, which will be considered here, are fixed at this
very early stage. In general the mathematical formulation of a multiobjective
problem includes a set of n design variables, a set of m objective and a set of
k constraint functions and can be defined as follows:

mins∈	 [f1(s), . . . , fm(s)]T

subject to gj(s) ≤ 0 j = 1, . . . , k
si ∈ Rd, i = 1, . . . , n

(12.5)

where the vector s = [s1, . . . , sn]T represents a design variable vector and � is
the feasible set in design space Rn. It is defined as the set of design variables
that satisfy the constraint functions g(s) in the form:

� = {s ∈ Rn|gj(s) ≤ 0} . (12.6)

Usually there exists no unique point which would give an optimum for all
m criteria simultaneously. Thus the common optimality concept used in scalar
optimization must be replaced by a new one, the so-called Pareto optimum:
A design vector s∗ ∈ � is Pareto optimal for the problem of Equation 12.5 if

278 Lagaros et al.

and only if there exists no other design vector s ∈ � such that fi(s) ≤ fi(s∗)
for i = 1, . . . , m with fj(s) < fj(s∗) for at least one objective j.

According to the above definition the design vector s∗ is considered as a
Pareto-optimal solution if there is no other feasible design vector that improves
at least one objective without worsening any other objective. The solution of
optimization problems with multiple objectives is the set of the Pareto-optimal
solutions. The problem of Equation 12.5 can be regarded, as being solved
after the set of Pareto-optimal solutions has been determined. In practical
applications, however, it is necessary to classify this set because the engineer
wants a unique final solution. Thus a compromise should be made among the
Pareto-optimal solutions.

12.3.3 Solving the Multiobjective Optimization Problem

Typical methods for generating the Pareto-optimal set combine the objectives
into a single, parameterized objective function by analogy to the decision
making search step. However, the parameters of this function are not set by
the decision making but systematically varied by the optimizer. Basically, this
procedure is independent of the underlying optimization algorithm. Three
previously used methods [4-7] are briefly discussed and are compared in
this study in terms of computational time and efficiency with the proposed
modified ES for treating multiobjective optimization problems.

Linear Weighting Method

The first method, called the linear weighting method, combines all the
objectives into a single scalar parameterized objective function by using
weighting coefficients. If wi, i = 1, . . . , m are the weighting coefficients, the
problem of Equation 12.5 can be written as follows:

min
s∈	

m∑
i=1

wifi(s) (12.7)

with no loss of generality the following normalization of the weighting
coefficients is employed:

m∑
i=1

wi = 1 . (12.8)

By varying these weights it is now possible to generate the set of Pareto-
optimal solutions for Equation 12.5. The weighting coefficients correspond
to the preference of the engineer for each criteria. Every combination of
those weighting coefficients correspond to a single Pareto-optimal solution,
thus, performing a set of optimization processes using different weighting
coefficients it is possible to generate the full set of Pareto-optimal solutions.

12 Multi-Objective Structural Optimization under Seismic Loading 279

In real-world problems there is not a common unit for the objectives
leading to differences of some orders of magnitude between the values of the
objectives. It is therefore suggested that the objectives should be normalized
according to the following expression:

f̃i(s) =
fi(s) − fi,min

fi,max − fi,min
(12.9)

where the normalized objectives f̃i(s) ∈ [0, 1], i = 1, . . . , m, use the same
design space with the non-normalized ones, while fi,min and fi,max are the
minimum and maximum values of the objective function i.

Distance Function Method

The distance methods are based on the minimization of the distance between
the set of the objective function values and some chosen reference points
belonging to the criterion space. Whereas criterion space is defined as the
set of the objective function values that correspond to design vectors of the
feasible domain. The resulting scalar problem is:

min
s∈	

dp(s) (12.10)

where the distance function can be written as follows:

dp(s) =
{ m∑

i=1

wi

[
fi(s) − zi

]p}1/p

(12.11)

where p is an integer number.
This technique has been widely used in structural optimization. The

reference point zid ∈ Rm that is selected by the engineer is also called ideal
or utopian point. A reference point that is frequently used is the following:

zid =
[
fi,min, . . . , fm,min

]T (12.12)

where fi,min is the optimum solution of the single-objective optimization
problem where the ith objective function is treated as the unique objective.
The normalization function Equation 12.8 for the weighting factors wi is also
used. In the case that p = ∞ Equation 12.10 is transformed to the minimax
problem:

min
s∈	

max
i

[
wifi(s)

]
, i = 1, . . . , m . (12.13)

In the case of p = 1 the formulation of the distance method is equivalent to
the linear method when the reference point used is the zero ẑ = 0, while the
case of p = 2 the method is called the weighted quadratic method.

280 Lagaros et al.

Constraint Method

According to this method the original multi-criterion problem is replaced by
a scalar problem where one criterion fk is chosen as the objective function
and all the other criteria are removed into the constraints. By introducing
parameters εi into these new constraints an additional feasible set is obtained:

�k(εi) = {s ∈ Rn|fi(s) ≤ εi, i = 1, . . . , m with i �= k} . (12.14)

If the resulting feasible set is denoted by �̄k = � ∩ �k the parameterized
scalar problem can be expressed as:

min
s∈	̄k

fk(s) . (12.15)

The constraint method gives the opportunity to obtain the full domain of
optimum solutions, in the horizontal or vertical direction using one criterion
as the objective function and the other as the constraint.

Modified Evolution Strategies for Multiobjective Optimization

The three above-mentioned methods are the typical ones. The typical methods
have been used in the past combined with mathematical programming
optimization algorithms where one design point was examined at each
optimization step as an optimum design candidate. In order to locate the set
of pareto-optimal solutions a family of optimization runs have to be executed.
On the other hand evolutionary algorithms instead of a single design point,
they work simultaneously with a population of design points, which is a
population of optimum design candidates, in the space of design variables.
This characteristic has been proved very useful since it is easy to implement
these methods in a parallel computing environment. Due to this characteristic,
evolutionary algorithms have a great potential in finding multiple optima, in a
single optimization run, which is very useful in Pareto optimization problems.
Since the early 1990s many researchers have suggested the use of evolutionary
algorithms in multiobjective optimization problems [22-26] an overview of all
these methods can be found in Fonseca and Fleming [1] and Zitzler [27].

In our study the method of Evolution Strategies (ES) is used, and some
changes have to been made in the random operators that are usually used in
order to implement ES in multiobjective optimization problems and guide the
convergence to a population that represent the set of Pareto-optimal solutions.
The idea in those changes is (1) the selection of the parent population at each
generation has to be changed in order to guide the search procedure towards
the set of pareto optimum solutions, and (2) to prevent convergence to a single
design point, and preserve diversity in the population in every generation step.
The first demand can be fulfilled if the selection of the individual is chosen
for reproduction potentially a different objective [22]. A random selection

12 Multi-Objective Structural Optimization under Seismic Loading 281

of the objective is implemented in this study. While in order to preserve
diversity in the population and fulfill the second requirement, fitness sharing
is implemented [28]. The idea behind sharing is to degrade those individuals
that are represented in the higher percentage of the population. The modified
objectives after sharing are the following:

f ′
i(s) =

fi(s)∑
h sh
(
d(s, h)

) (12.16)

where the sharing function used in the current study is as follows:

sh
(
d(s, h)

)
=
{

1 − (d(s,h)
σshare

)a
if d(s, h) < σshare

0 otherwise
(12.17)

The distance function used is in the objective space:

d(s, h) = ‖f(s) − f(h)‖ . (12.18)

12.4 Structural Design under Seismic Loading

The equations of equilibrium for a finite element system in motion for the ith
design vector, can be written in the usual form:

M(si)üt + C(si)u̇t + K(si)ut = Rt (12.19)

where M(si), C(si) and K(si) are the mass, damping and stiffness matrices
for the ith design vector si; Rt is the external load vector, while ut, u̇t

and üt are the displacement, velocity, and acceleration vectors of the finite
element assemblage, respectively. The solution methods of direct integration
of equations of motion and of response spectrum modal analysis, which is
based on the mode superposition approach, will be considered in the following
paragraphs.

The Newmark integration scheme is adopted in the present study to
perform the direct time integration of the equations of motion where the
equilibrium Equation 12.19 is considered at time t + ∆t

M(si)üt+∆t + C(si)u̇t+∆t + K(si)ut+∆t = Rt+∆t (12.20)

and the variation of velocity and displacement are given by

u̇t+∆t = u̇t + [(1 − δ)üt + δüt+∆t]∆t (12.21)

ut+∆t = ut + u̇t∆t + [(
1
2

− α)üt + αüt+∆t]∆t2 (12.22)

where α and δ are parameters that can be determined to obtain integration
accuracy and stability. Solving for üt+∆t in terms of ut+∆t from Equation

282 Lagaros et al.

12.22 and then substituting for üt+∆t in (12.21) we obtain equations for üt+∆t

and u̇t+∆t each in terms of the unknown displacements ut+∆t only. These two
relations for üt+∆t and u̇t+∆t are substituted into Equation 12.20 to solve for
ut+∆t. As a result of this substitution the following well-known equilibrium
equation is obtained at each ∆t

Keff(si)ut+∆t = Reff
t+∆t . (12.23)

12.4.1 Creation of Artificial Accelerograms

The selection of the proper external loading Rt for design purposes is not
an easy task due to the uncertainties involved in the seismic loading. For
this reason a rigorous treatment of the seismic loading is to assume that the
structure is subjected to a set of artificial earthquakes that are more likely to
occur in the region where the structure is located. These seismic excitations
are produced as a series of artificial accelerograms compatible with the elastic
design response spectrum of the region.

In this work the implementation published by Taylor [29] for the generation
of statistically independent artificial acceleration time histories is adopted.
This method is based on the fact that any periodic function can be expanded
into a series of sinusoidal waves:

x(t) =
∑

k

Ak sin(ωkt + ϕk) (12.24)

where Ak is the amplitude, ωk is the cyclic frequency and φk is the phase angle
of the kth contributing sinusoid. By fixing an array of amplitudes and then
generating different arrays of phase angles, different motions can be generated
which are similar in general appearance but different in the ’details’. The
computer uses a random number generator subroutine to produce strings of
phase angles with a uniform distribution in the range between 0 and 2π. The
amplitudes Ak are related to the spectral density function in the following
way:

G(ωk)∆ω =
A2

k

2
(12.25)

where G(ωk)∆ω may be interpreted as the contribution to the total power
of the motion from the sinusoid with frequency ωk. The power of the motion
produced by Equation 12.24 does not vary with time. To simulate the transient
character of real earthquakes, the steady-state motion is multiplied by a
deterministic envelope function I(t):

Z(t) = I(t)
∑

k

Aksin(ωkt + ϕk) . (12.26)

The resulting motion is stationary in frequency content with peak
acceleration close to the target peak acceleration. In this study a trapezoidal

12 Multi-Objective Structural Optimization under Seismic Loading 283

intensity envelope function is adopted. The generated peak acceleration is
artificially modified to match the target peak acceleration, which corresponds
to the chosen elastic design response spectrum. An iterative procedure is
implemented to smooth the calculated spectrum and improve the matching
[29].

Five artificial uncorrelated accelerograms, produced by the previously
discussed procedure and shown in Figure 12.1, have been used as the
input seismic excitation for the numerical tests. The elastic design response
spectrum considered in the current study is depicted in Figure 12.2 for
damping ratio ξ = 2.5%. The corresponding response spectrum of the first
artificial accelerogram is also depicted in Figure 12.2.

Figure 12.1. The five artificial accelerograms

12.4.2 Response Spectrum Modal Analysis

The response spectrum modal analysis is based on a simplification of the mode
superposition approach with the aim to avoid time history analyses which are
required by both the direct integration and mode superposition approaches. In
the case of the response spectrum modal analysis, Equation 12.19 is modified
according to the modal superposition approach, for the ith design vector, in
the following form:

284 Lagaros et al.

Figure 12.2. Elastic design response spectrum of the region and response spectrum
of the first artificial accelerogram (ξ = 2.5%).

M̄(si)üt + C̄(si)u̇t + K̄(si)ut = R̄t (12.27)

where
M̄(si) = ΦT

i MiΦi (12.28)

C̄(si) = ΦT
i CiΦi (12.29)

K̄(si) = ΦT
i KiΦi (12.30)

R̄t = ΦT
i Rt (12.31)

are the generalized values of the corresponding matrices and the loading
vector, while Φi is an eigenmode shape matrix to be defined later. For
simplicity M(si), C(si), K(si) are denoted by Mi, Ci, Ki, respectively. These
matrices correspond to the design, which is defined by the ith vector of the
design parameters, also called the design vector. According to the modal
superposition approach the system of N simultaneous differential equations,
is transformed to a set of N independent normal-coordinate equations.

In the response spectrum modal analysis a number of different formulas
have been proposed to obtain reasonable estimates of the maximum response
based on the spectral values without performing time history analyses for
a considerable number of transformed dynamic equations. The simplest and
most popular of these is the square root of the sum of the squares (SRSS) of the
modal responses. According to this estimate the maximum total displacement
is approximated by

umax =
√

u2
1,max + · · · + u2

N,max (12.32)

12 Multi-Objective Structural Optimization under Seismic Loading 285

where uj,max corresponds to the maximum displacement calculated from the
jth transformed dynamic equations over the complete time period. The use
of Equation 12.32 permits this type of “dynamic” analysis by knowing only
the maximum modal coordinates uj,max.

The following steps summarize the response spectrum modal analysis
adopted in this study and by a number of seismic codes around the world:

1. Calculate a number m′ < N of eigenfrequencies and the corresponding
eigenmode shape matrices, which are classified in the following order
(ω1

i , . . . , ωm′
i), Φi = [φ1

i , . . . , φ
m′
i], respectively, where ωj

i , φj
i are the jth

eigenfrequency-eigenmode corresponding to the ith design vector. m′ is a
user specified number, based on experience or on previous test analyses,
which has to satisfy the requirement of Step 6.

2. Calculate the generalized masses, according to the following equation:

m̄j
i = φj

i

T
Miφ

j
i . (12.33)

3. Calculate the coefficients Lj
i , according to the following equation:

Lj
i = φj

i

T
Mir (12.34)

where r is the influence vector, which represents the displacements of the
masses resulting from static application of a unit, ground displacement.

4. Calculate the modal participation factor Γ j
i , according to the following

equation:

Γ j
i =

Lj
i

m̄j
i

. (12.35)

5. Calculate the effective modal mass for each design vector and for each
eigenmode, by the following equation:

mj
eff,i =

Lj
i

2

m̄j
i

. (12.36)

6. Calculate a number m < m′ of the important eigenmodes. According to
Eurocode the minimum number of the eigenmodes that has to be taken
into consideration is defined by the following assumption: The sum of the
effective eigenmasses must not be less than 90% of the total vibrating mass
mtot of the system, so the first m eigenmodes that satisfy the equation

m∑
j=1

mj
eff,i ≥ 0.90mtot (12.37)

are taken into consideration.
7. Calculate the values of the spectral acceleration Rd(Tj) that correspond

to each eigenperiod Tj of the important modes.

286 Lagaros et al.

8. Calculate the modal displacements according to equation

(SD)j =
Rd(Tj)

ω2
j

=
Rd(Tj) × T 2

j

4π2 . (12.38)

9. Calculate the modal displacements:

uj,max = Γ j
i × φj

i × (SD)j . (12.39)

10. The total maximum displacement is calculated by superimposing the
maximum modal displacements according to Equation 12.32.

12.5 Solution of the Optimization Problem

The optimization problem is solved with evolution strategies. Evolution
strategies were proposed for parameter optimization problems in the 1970s by
Rechenberg [30] and Schwefel [31]. Similar to genetic algorithms, ES imitate
biological evolution in nature and have three characteristics that make them
different from other conventional optimization algorithms: (1) in place of
the usual deterministic operators, they use randomized operators: mutation,
selection as well as recombination; (2) instead of a single design point, they
work simultaneously with a population of design points in the space of
variables; (3) they can handle continuous, discrete, and mixed optimization
problems. The second characteristic allows for a natural implementation
of ES on parallel computing environments. The ES were initially applied
for continuous optimization problems, but recently they have also been
implemented in discrete and mixed optimization problems.

12.5.1 ES for Discrete Optimization Problems

The multi-membered ES adopted in the current study, based on the discrete
formulation, use three operators: recombination, mutation, and selection
operators that can be included in the algorithm as follows:

Step 1 (recombination and mutation)

The population of µ parents at gth generation produces λ offsprings. The
genotype of any descendant differs only slightly from that of its parents. For
every offspring vector a temporary parent vector s̃ = [s̃1, . . . , s̃n]T is first built
by means of recombination. For discrete problems the following recombination
cases can be used:

s̃i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sα,i or sb,i randomly
sm,i or sb,i randomly
sbj,i

sα,i or sbj,i randomly
sm,i or sbj,i randomly

(12.40)

12 Multi-Objective Structural Optimization under Seismic Loading 287

where s̃i is the ith component of the temporary parent vector s̃, sα,i and sb,i

are the ith components of the vectors sa and sb which are two parent vectors
randomly chosen from the population. The vector sm is not randomly chosen
but is the best of the µ parent vectors in the current generation. In case C
of (12.40), s̃i = sbj,i means that the ith component of s̃ is chosen randomly
from the ith components of all µ parent vectors. From the temporary parent
s̃ an offspring can be created following the mutation operator.

Let as consider the temporary parent s
(g)
p of the generation g that produces

an offspring s
(g)
o through the mutation operator as follows:

s(g)
o = s(g)

p + z(g) (12.41)

where z(g) = [z(g)
1 , . . . , z

(g)
n]T is a random vector. The mutation operator in

the continuous version of ES produces a normally distributed random change
vector z(g). Each component of this vector has a small standard deviation
value σi and zero mean value. As a result of this there is a possibility that
all components of a parent vector may be changed, but usually the changes
are small. In the discrete version of ES the random vector z(g) is properly
generated in order to force the offspring vector to move to another set of
discrete values. The fact that the difference between any two adjacent values
can be relatively large is against the requirement that the variance σ2

i should
be small. For this reason it is suggested that not all the components of a
parent vector, but only a few of them (e.g. k), should be randomly changed in
every generation. This means that n−k components of the randomly changed
vector z(g) will have a zero value. In other words, the terms of vector z(g) are
derived from

z
(g)
i =

{
(κ + 1)δsi for k randomly chosen components

0 for n − k other components (12.42)

where δsi is the difference between two adjacent values in the discrete set and
κ is a random integer number, which follows the Poisson distribution

p(κ) =
(γ)κ

γ!
e−γ (12.43)

where γ is the standard deviation as well as the mean value of the random
number κ. This shows how the random change z

(g)
i is controlled by the

parameter γ. The choice of k depends on the size of the problem and it is
usually taken as 1/5 of the total number of design variables. The k components
are selected using uniform random distribution in every generation according
to Equation 12.42.

Step 2 (selection)

There are two different types of the multi-membered ES:

288 Lagaros et al.

• (µ + λ)-ES: The best µ individuals are selected from a temporary
population of (µ+λ) individuals to form the parents of the next generation.

• (µ, λ)-ES: The µ individuals produce λ offsprings (µ ≤ λ) and the selection
process defines a new population of µ individuals from the set of λ
offsprings only.

In order to implement ES in Pareto optimization problems the selection
operator is based on randomly chosen objectives. For discrete optimization
the procedure terminates when the following termination criteria is satisfied:
when the ratio µb/µ has reached a given value εd (=0.5 to 0.8) where µb is the
number of the parent vectors in the current generation with the best objective
function value.

12.5.2 ES in Multiobjective Structural Optimization Problems

The application of EAs in multiobjective optimization problems has received a
lot of attention in the last five years [21-28]due to the difficulty of conventional
optimization techniques, such as gradient based methods, to be extended to
multiobjective optimization problems. EAs, however, have been recognized to
be more appropriate to multiobjective optimization problems since early in
their development [1]. Multiple individuals can search for multiple solutions in
parallel, taking advantage of any similarities available in the family of possible
solutions to the problem.

In the first implementation where the typical methods are used, the
optimization procedure, in order to generate a set of Pareto-optimal solutions,
initiates with a set of parent design vectors needed by the ES optimizer and a
set of weighting coefficients for the combination of all objectives into a single
scalar parameterized objective function. These weighting coefficients are not
set by the engineer but are being systematically varied by the optimizer after
a Pareto-optimal solution has been achieved. There is an outer loop which
systematically varies the parameters of the parameterized objective function,
and is called the decision making loop. The inner loop is the classical ES
process, starting with a set of parent vectors. If any of these parent vectors
gives an infeasible design then this parent vector is modified until it becomes
feasible. Subsequently, the offsprings are generated and checked if they are in
the feasible region. The number of parents and offsprings involved affects the
computational efficiency of the multi-membered ES discussed in this work. It
has been observed that values of µ and λ equal to the number of the design
variables produce better results.

The ES algorithm when combined with the typical methods for multi-
objective structural optimization applications under seismic loading can be
stated as follows:

Outer loop - Decision making loop
Set the parameters wi of the parameterized objective function
Inner loop - ES loop

12 Multi-Objective Structural Optimization under Seismic Loading 289

1. Selection step: selection of si, (i = 1, 2 . . . , µ) parent vectors of the design
variables

2. Analysis step: solve M(si)ü + C(si)u̇ + K(si)u = Rt, (i = 1, . . . , µ)
3. Evaluation of parameterized objective function
4. Constraints check: all parent vectors become feasible
5. Offspring generation: generate sj , (j = 1, . . . , λ) offspring vectors of the

design variables
6. Analysis step: solve M(sj)ü + C(sj)u̇ + K(sj)u = Rt, (j = 1, . . . , λ)
7. Evaluation of the parameterized objective function
8. Constraints check: if satisfied continue, else change sj and go to step 5
9. Selection step: selection of the next generation parents according to (µ+λ)

or (µ, λ) selection schemes
10. Convergence check: If satisfied stop, else go to step 5

End of Inner loop
End of Outer loop

In the second implementation the special characteristic of the EA optimizers
are used. The ESMO algorithm for multiobjective structural optimization
applications under seismic loading can be stated as follows:

1. Selection step: selection of si, (i = 1, 2 . . . , µ) parent vectors of the design
variables

2. Analysis step: solve M(si)ü + C(si)u̇ + K(si)u = Rt, (i = 1, . . . , µ)
3. Evaluation of parameterized objective function
4. Constraints check: all parent vectors become feasible
5. Offspring generation: generate sj , (j = 1, . . . , λ) offspring vectors of the

design variables
6. Analysis step: solve M(sj)ü + C(sj)u̇ + K(sj)u = Rt, (j = 1, . . . , λ)
7. Evaluation of the parameterized objective function
8. Constraints check: if satisfied continue, else change sj and go to step 5
9. Selection step: random selection of the potential objective for each

individual and selection of the next generation parents according to (µ+λ)
or (µ, λ) selection scheme

10. Fitness sharing
11. Convergence check: If satisfied stop, else go to step 5

12.6 Numerical Results

Three benchmark test examples, one six-storey space frame and one multi-
layered space truss, are investigated. The following abbreviations are used
in this section: DTI refers to the Newmark Direct time Integration Method;
RSMA refers to the Response Spectrum Modal Analysis; LWM refers to the
Linear Weighting Method; DFM refers to the Distance Function Method; CM

290 Lagaros et al.

refers to the Constraint Method and ESMO refers to the proposed Evolution
Strategies for treating Multiobjective Optimization problems.

Figure 12.3. I-shape cross section.

12.6.1 Six-storey Space Frame

The modulus of elasticity is 200 GPa and the yield stress is σy = 250 MPa. The
cross section of each member is assumed to be an I-shape and for each member
two design variables are considered, as shown in Figure 12.3. The objective
functions considered for the problems are the weight of the structure, the
maximum displacement and the first eigen period. The first two objective
functions have to be minimized while the third one has to be maximized. The
constraints are imposed on the inter-storey drifts and on the maximum non-
dimensional ratio q of Equations 12.2 and 12.3 for each element group under
a combination of axial force and bending moments. The values of allowable
axial and bending stresses are Fa = 150 MPa and Fb = 165 MPa, respectively,
whereas the maximum allowable inter-storey drift is limited to 4.5 cm which
corresponds to 1.5% of the height of each storey. The test example was run
on a Silicon Graphics Power Challenge computer.

The space frame consists of 63 elements with 180 degrees of freedom as
shown in Figure 12.4. The beams have length L1 = 7.32m and the columns
L2 = 3.66m. The structure is loaded with a 19.16 kPa gravity load on all
floor levels and a static lateral load of 109 kN applied at each node in the
front elevation along the z direction. The element members are divided into
5 groups, each one having two design variables resulting in ten total design
variables.

The Pareto-optimal set of solutions was first computed with the LWM.
The performance of this method for the case of seeking the simultaneous
minimization of weight and maximum displacement is depicted in Figures 12.5
and 12.6 for both static and seismic loading conditions. In Figures 12.5
and 12.6 the performance of the DFM and ESMO methods are also presented.

12 Multi-Objective Structural Optimization under Seismic Loading 291

Figure 12.4. Six-storey space frame.

Figure 12.5. Six-storey frame: Linear (p = 1), Distance method and ESMO (both
static and seismic loading conditions) using LVM.

For the case of the DFM the zero (0) point was considered as the utopian
point, while three different schemes of the DFM were also examined, p = 1:
equivalent to the LWM, p = 2: called quadratic LWM and p = 8: equivalent to
the p = ∞. The case when the weight and the first eigenperiod are considered
as the objectives of the problem is depicted in Figure 12.9.

The CM is implemented with the following variations: (1) The weight as
the only criterion and the maximum displacement or the first eigenperiod
as constraint; and (2) the maximum displacement or the first eigenperiod

292 Lagaros et al.

Figure 12.6. Six-storey frame: Linear (p = 1), Distance method and ESMO (both
static and seismic loading conditions)using LVM.

Figure 12.7. Six-storey frame: Linear (p = 1) and Constraint method (both static
and seismic loading conditions) using CM.

12 Multi-Objective Structural Optimization under Seismic Loading 293

as the only criterion and the weight as constraint. In Figures 12.7 and 12.8
we can see the performance of the CM, for the simultaneous minimization of
weight and maximum displacement. These sets of Pareto optimal solutions are
produced for the following cases: (1) different upper limits for the maximum
displacement, and (2) different upper limits of the weight of the structure.
In Figure 12.10 we can see the performance of the CM, for the simultaneous
minimization of weight and the first eigenperiod and for the cases: (1) with
different upper limits for the first eigenperiod, and (2) for different upper
limits of the weight of the structure.

Figure 12.8. Six-storey frame: Linear (p = 1) and Constraint method (both static
and seismic loading conditions)using CM.

It can also be seen from Figures 12.6 and 12.8 that the Pareto optimal
solutions achieved by the direct time integration approach under the multiple
loading conditions of the five artificial accelerograms given in Figures 12.6
and 12.8 is less than the corresponding design given by the response spectrum
modal analysis. In figures 12.5, 12.6 and in 12.9, 12.10 we can see that there
is little difference in the performance of the typical methods and the ESMO
method, while as can be seen from Table 12.1 there is a difference in the
computing time.

294 Lagaros et al.

Figure 12.9. Six-storey frame: Linear (p = 1), Distance method and ESMO
method.

Figure 12.10. Six-storey frame: Linear (p = 1), Constraint method and ESMO
method

12 Multi-Objective Structural Optimization under Seismic Loading 295

Table 12.1. Example 1 - Time required by classical and EA methods for dealing
with multiobjectives for dynamic loading conditions.

Method Time (sec) Generations FE analyses

p = 1 DTI 254,112 372 2,609
ESMO DTI 35,788 28 367
p = 1 RSMA 109,803 411 2,901
ESMO RSMA 15,171 31 401

12.6.2 Multi-layered Space Truss

The optimum design with multiple objectives of a long span aircraft hangar
is investigated. The objective functions considered for the problems are the
weight of the structure and the maximum deflection, both of which are to be
minimized. The members of the space truss were grouped as follows: Group 1:
Longitudinal members of the top and bottom flanges. Group 2: Cross girders
of the top and bottom flanges. Group 3: Bracing diagonals connecting top and
bottom flanges to top and bottom chords of the space frame. Group 4: Top
and bottom chords of the space frame. Group 5: Diagonal bracing members
connecting top and bottom chords of space frame to middle chords. Group 6:
Middle chords of the space frame. The hangar comprises 3,614 nodes (10,638
d.o.f.) and 12,974 members. Members of group 1 to 3 are to be selected from
the structural sections listed in Table 12.2 and members of groups 4 to 6
from the tube sizes given in Table 12.3. Taking advantage of the symmetry
of the structure, the formulation of the problem was made only for one half
of the hangar which results in a model with 5,269 d.o.f. (see Figure 12.11). A
constraint of 750 mm on the maximum deflection was imposed in addition to
the stress constraints.

The performance of the LWM for the case of the simultaneous
minimization of weight and maximum displacement is depicted in
Figure 12.12. In Figure 12.12 the DFM with p = 1, 2 and 8 and ESMO
methods are also presented. For this test example two cases are considered:
(1) The weight as the only criterion and the maximum displacement as
constraint; and (2) The maximum displacement as the only criterion and
the weight as constraint. Figure 12.13 depicts the performance of the CM, for
the simultaneous minimization of weight and maximum displacement. These
sets of Pareto-optimal solutions, are produced for different upper limits for
the maximum displacement and for different upper limits of the weight of the
structure. In Figures 12.12 and 12.13 we can see that there is little difference
in the performance of the typical methods and the ESMO method, while as
can be seen from Table 12.4 there is significant difference in the computing
time.

296 Lagaros et al.

Figure 12.11. Multi-layered space truss.

Figure 12.12. Multi-layered space truss: Linear, Distance and ESMO method.

12 Multi-Objective Structural Optimization under Seismic Loading 297

Table 12.2. Properties of the structural members (Database 1).

Section number Type Area (mm2)

1 ISMC 100 1170
2 2 x ISMC 75 1740
3 2 x ISMC 100 2340
4 2 x ISMC 125 3238
5 2 x ISMC 150 4176
6 2 x ISMC 175 4878
7 2 x ISMC 200 5642
8 2 x ISMC 225 6802
9 2 x ISMC 250 7734
10 2 x ISMC 300 9128
11 2 x ISMC 350 10732
12 2 x ISMC 400 12585
13 2 x ISMC 400 with 2 x 8mm thick MS Plates 14986
14 2 x ISMC 400 with 2 x 12mm thick MS Plates 16186
15 2 x ISMC 400 with 2 x 16mm thick MS Plates 17386
16 2 x ISMC 400 with 2 x 25mm thick MS Plates 20086
17 4 x ISMC 400 25172
18 4 x ISMC 400 with 2 x 8mm thick MS Plates 30772
19 4 x ISMC 400 with 2 x 16mm thick MS Plates 36372
20 4 x ISMC 400 with 2 x 20mm thick MS Plates 39172
21 4 x ISMC 400 with 2 x 25mm thick MS Plates 42672
22 4 x ISMC 400 with 2 x 32mm thick MS Plates 47572
23 4 x ISMC 400 with 4 x 20mm thick MS Plates 51172
24 4 x ISMC 400 with 4 x 25mm thick MS Plates 57672
25 4 x ISMC 400 with 4 x 32mm thick MS Plates 66772
26 4 x ISMC 400 with 4 x 40mm thick MS Plates 77172
27 4 x ISMC 400 with 4 x 50mm thick MS Plates 90172

Table 12.3. Properties of the structural members (Database 2).

Section number Outer diameter Thickness Area (mm2)

1 60.30 3.25 582.73
2 76.10 4.50 1012.63
3 88.90 4.85 1281.16
4 114.30 5.40 1848.19
5 139.70 5.40 2279.26
6 152.40 5.40 2494.80
7 165.10 5.40 2710.34
8 193.70 5.90 3482.35
9 219.10 5.90 3953.34
10 273.00 5.90 4952.80

298 Lagaros et al.

Figure 12.13. Multi-layered space truss: Linear, Distance and ESMO method.

Table 12.4. Example 2 – Time required by classical and EA methods for dealing
with multi-objectives

Method Time (sec) Generations FE analyses

p = 1 7.917 195 1.163
ESMO 2.119 28 312

12.7 Conclusions

Evolution strategies can be considered as an efficient tool for multiobjective
design optimization of structural problems such as space frames and multi-
layered space trusses under static and seismic loading conditions. The LWM
and CM methods compared to the ESMO method appear to be robust and
reliable for treating multiobjective structural optimization problems giving
almost identical results. A generalization of the LWM for p > 1 called the
CM is also examined in this study. The results obtained by the DFM were
somewhat different than those taken by the other two methods, while for large
values of p it produces either too close or disperse points in the Pareto sets.

In terms of computational efficiency it appears that all three typical
methods considered require similar computational effort, with approximately
the same number of generation steps. On the other hand the ESMO method
requires one order of magnitude less computing time than the typical methods.

12 Multi-Objective Structural Optimization under Seismic Loading 299

The presented results indicate that it is possible to achieve an optimal design
under seismic loading. Both design methodologies based on a number of
artificially generated earthquakes and the response spectrum modal analysis
adopted by the seismic codes have been implemented and compared. The
more rigorous dynamic approach based on time history analyses gives more
economic designs than the approximate response spectrum modal analysis, at
the expense of requiring more computational effort.

References

1. Fonseca, CM, and Fleming, PJ, An Overview of Evolutionary Algorithms in
Multiobjective Optimization, Evolutionary Computations, 1995; 3: 1-16.

2. Stadler, W, Natural Structural Shapes of Shallow Arches, Journal of Applied
Mechanics, 1977; 44: 291-298.

3. Leitmann, G, Some Problems of Scalar and Vector-valued Optimization in
Linear Viscoelasticity, Journal of Optimization Theory and Applications, 1977;
23: 93-99.

4. Stadler, W, Natural Structural Shapes (The Static Case), Quarterly Journal of
Mechanics and Applied Mathematics, 1978; 31: 169-217.

5. Gerasimov, EN, and Repko, VN, Multi-criteria Optimization, Soviet Applied
Mechanics, 1978; 14: 1179-1184.

6. Koski, J, Truss Optimization with Vector Criterion, Publication No. 6, Tampere
University of Technology, 1979.

7. Cohon, JL, Multi-objective Programming and Planning, New York, Academic
Press, 1978.

8. Papadrakakis, M, Lagaros, ND, and Plevris, V, Optimum Design of Space
Frames Under Seismic Loading, International Journal of Structural Stability
and Dynamics, 2001; 1: 105-124.

9. Cassis, JH, Optimum Design of Structures Subjected to Dynamic Loads, PhD
Thesis, University of California, Los Angeles, 1974.

10. Johnson, EH, Disjoint Design Spaces in Optimization of Harmonically Excited
Structures, AIAA Journal, 1976; 14: 259-261.

11. Eurocode 3, Design of Steel Structures, Part1.1: General Rules for Buildings,
CEN, ENV 1993-1-1/1992.

12. Pareto, V, Cours d’economique Politique, vol. 1&2, Lausanne, Rouge, 1897.
13. Adali, S, Pareto Optimal Design of Beams Subjected to Support Motion,

Computers and Structures, 1983; 16: 297-303.
14. Baier, H, Structural Optimization in Industrial Environment, In H Eschenauer

and N Olhoff (eds.) Optimization Methods in Structural Design, Proceedings of
the Euromech-Colloquium 164, University of Siegen, Bibliographisches Institut
A6, Zurich, pp. 140-145, 1983.

15. Diaz, A, Sensitivity Information in Multiobjective Optimization, Engineering
Optimization, 1987; 12:281-297.

16. Hajela, P, and Shih, CJ, Multi-objective Optimum Design in Mixed Integer and
Discrete Design Variable Problems, AIAA Journal, 1990; 28: 670-675.

17. Rozvany, GIN Structural Design via Optimality Criteria, Dordecht, Kluwer,
1989.

300 Lagaros et al.

18. Goicoechea, A, Hansen DR, and Duckstein L, Multi-objective Decision Analysis
with Engineering and Business Applications, New York, Wiley, 1982.

19. Koski, J, Bicriterion Optimum Design Method for Elastic Trusses, Acta
Polytechnica Scandinavica, Mechanical engineering series No 86, Dissertation,
Helsinki, 1984.

20. Sandgren, E, Multicriteria Design Optimization by Goal Programming, In H
Adeli (ed.) Advances in Design Optimization, Chapman & Hall, pp. 225-265,
1994.

21. Kamal, CS, and Adeli, H, Fuzzy Discrete Multicriteria Cost Optimization of
Steel Structures, Journal of Structural Engineering, 2000; 126: 1339-1347.

22. Schaffer, JD. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms, PhD thesis, Vanderbilt University, 1984.

23. Fonseca, CM, and Fleming, PJ, Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization, In S Forrest S (ed.)
Proceedings of the 5th International Conference on Genetic Algorithms, San
Mateo, California, Morgan Kaufmann, pp. 416-423, 1993.

24. Horn, J, Nafpliotis, N, and Goldberg, DE, A Niched Pareto Genetic Algorithm
for Multiobjective Optimization, In Proceedings of the 1st IEEE Conference
on Evolutionary Computation, IEEE World Congress on Evolutionary
Computation, Volume 1, Piscataway, NJ, pp. 82-87, 1994.

25. Deb, K, and Goldberg, DE, An Investigation of Niche and Species Formation
in Genetic Function Optimization, In JD Schaffer (ed.) Proceedings of the
3rd International Conference on Genetic Algorithms, San Mateo, California,
Morgan Kaufmann, pp. 42-50, 1989.

26. Hajela, P, and Lin, CY, Genetic Search Strategies in Multicriterion Optimal
Design, Structural Optimization, 1992; 4: 99-107.

27. Zitzler, E, Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications, PhD thesis, Swiss Federal Institute of Technology Zurich,
Computer Engineering and Networks Laboratory, 1999.

28. Goldberg, DE, and Richardson, J, Genetic Algorithms with Sharing for
Multimodal Function Optimization, In JJ Grefenstette (ed) Genetic Algorithms
and Their Applications, Proceedings of the 2nd International Conference on
Genetic Algorithms, Hillsdale, NJ, Lawrence Erlbaum, pp. 41-49, 1987.

29. Taylor, CA, EQSIM, A Program for Generating Spectrum Compatible
Earthquake Ground Acceleration Time Histories, Reference Manual, Bristol
Earthquake Engineering Data Acquisition and Processing System, December,
1989.

30. Rechenberg, I, Evolution Strategy: Optimization of Technical Systems
According to the Principles of Biological Evolution, Stuttgart, Frommann-
Holzboog, 1973.

31. Schwefel, HP, Numerical Optimization for Computer Models, Chi Chester, UK,
Wiley & Sons, 1981.

Index

adaptive scalarizing functions, 47
aggregating functions, 9
archive, 51, 81, 85
algorithm complexity, 173
artificial accelerograms, 282

bottom-up approach, 110, 120

classical methods, 141
COCZ, 120
comet problem, 141
COMOGA, 232
constrained test problems, 121
continuous test functions, 71
convergence, 73, 106,148
curve problem, 116
cycle crossover, 65

deleting duplicates, 58
DTLZ test problems, 124
DCMOGA, 209
DCMOGADES, 212
DIPA, 144
distributed cooperation model

– of multi-objective genetic algorithm,
209

– of MOGA with environmental
scheme, 212

domain knowledge, 240
DTLZ, 125, 125, 126
dynamic inheritance probability

adjuster, 150

ε-dominance, 170

elitist strategies, 41
evaluation methods, 204

FSA genome, 255

GA parameters, 157, 211
genetic algorithms, 196, 250

“komma” selection, 39

min-max, 239
mixed strategy, 47
model problem, 49
MOGA, 210
MOGADES, 205
MTF, 259
multi-layered space truss, 295
multiple knapsack problem, 60, 64, 67
mutation control, 34

niching operator, 124
non-dominated solutions, 45, 64, 84
non-elitist strategies, 39
NPGA, 12
NSGA-II, 11, 107, 215

order crossover, 66

PAES, 13, 81
Pareto

– dominance, 168, 231, 242
– optimality, 8

ranking, 170
pareto-optimal front, 105, 109

302 Index

partially matched crossover, 66
particles swarm, 147
PECR algorithm, 168
PISA, 108
plus selection, 41
PS-EA, 148
PSO scheme, 158

Quad-trees, 81

redundant solutions, 136
response spectrum modal, 281
robust optimization, 242

SEAMO, 55

seismic loading, 273
self-adaptation, 33
sphere problem, 114
SUM, 150

test problem design, 109
test problem generator, 117

uniform mutation, 73
uniform order based crossover (UOBX),

66

Vehicle routing problem, 56
VEGA, 9, 203, 232

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

